Dyalog ${ }^{\text {TM }}$ for Windows

Programmer's Guide and Language Reference

Version: 13.1

Dyalog Limited

email: support@dyalog.com
http://www.dyalog.com

Dyalog is a trademark of Dyalog Limited
Copyright © 1982-2012 by Dyalog Limited

All rights reserved.

Version: 13.1

Revision: 22185

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication without notification.

TRADEMARKS:
SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.
Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All other trademarks and copyrights are acknowledged.

Contents

Chapter 1:Introduction. 1
Workspaces 1
Namespaces 2
Arrays. 4
Legal Names. 8
Specification of Variables. 8
Vector Notation. 9
Structuring of Arrays. 10
Display of Arrays. 11
Prototypes and Fill Items. 15
Expressions 17
Functions. 18
Operators. 21
Complex Numbers 23
128 Bit Decimal Floating-Point Support. 27
Namespace Syntax 32
Threads. 46
External Variables. 60
Component Files. 61
Auxiliary Processors 61
Migration Level 61
Key to Notation 62
Chapter 2: DefinedFunctions \& Operators 63
Canonical Representation. 63
Model Syntax. 64
Statements. 65
Global \& Local Names. 66
Namelists. 68
Function Declaration Statements. 69
Access Statement 70
Attribute Statement 71
Implements Statement 71
Signature Statement. 72
Control Structures. 74
Access Statement. 76
Attribute Statement. 77
If Statement. 78
While Statement. 81
Repeat Statement 83
For Statement. 85
Select Statement. 87
With Statement. 89
Hold Statement. 90
Trap Statement. 94
GoTo Statement. 97
Return Statement. 97
Leave Statement. 97
Continue Statement 98
Section Statement. 98
Triggers. 99
Idiom Recognition 102
Search Functions and Hash Tables. 108
Locked Functions \& Operators. 109
The State Indicator 110
Dynamic Functions \& Operators 112
APL Line Editor 128
Chapter 3: Object Oriented Programing 137
Introducing Classes. 137
Constructors. 142
Destructors. 155
Class Members. 158
Fields. 159
Methods. 164
Properties. 168
Interfaces 181
Including Namespaces in Classes 184
Nested Classes. 186
Namespace Scripts 195
Class Declaration Statements. 200
:Field Statement 206
:Property Section. 208
PropertyGet Function 210
PropertySet Function. 211
PropertyShape Function. 212
Chapter 4: Primitive Functions 213
Scalar Functions 213
Mixed Functions. 216
Conformability 219
Fill Elements. 219
Axis Operator 220
Functions (A-Z). 220
Abort: 221
Add: 222
And, Lowest Common Multiple: 223
Assignment: 224
Assignment (Indexed): 227
Assignment (Selective): 231
Binomial: 232
Branch: 232
Catenate/Laminate: 235
Catenate First: 237
Ceiling: 237
Circular: 238
Conjugate: 239
Deal: 239
Decode: 240
Depth: 242
Direction (Signum): 242
Disclose 244
Divide: 245
Drop: 246
Drop with Axes: 247
Enclose: 248
Enclose with Axes: 249
Encode: 250
Enlist: 252
Equal: 253
Excluding: 254
Execute (Monadic): 255
Execute (Dyadic): 255
Expand: 256
Expand First: 257
Exponential: 257
Factorial: 257
Find: 258
First: 259
Floor: 259
Format (Monadic) 260
Format (Dyadic): 264
Grade Down (Monadic): 266
Grade Down (Dyadic): 267
Grade Up (Monadic) 269
Grade Up (Dyadic): 271
Greater: 272
Greater Or Equal: 273
Identity: 273
Index: 274
Index with Axes: 277
Index Generator: 278
Index Of: 279
Indexing: 280
Intersection: 284
Left: 285
Less: 286
Less Or Equal: 286
Logarithm: 287
Magnitude: 287
Match: 288
Matrix Divide 289
Matrix Inverse 291
Maximum: 292
Membership: 292
Minimum: 292
Minus: 292
Mix: 293
Multiply: 294
Nand: 294
Natural Logarithm: 294
Negative: 295
Nor: 295
Not: 295
Not Equal: 296
Not Match 296
Or, Greatest Common Divisor: 297
Partition: 298
Partitioned Enclose: 300
Pi Times: 301
Pick: 301
Plus: 302
Power: 302
Ravel: 303
Ravel with Axes: 303
Reciprocal: 306
Replicate: 306
Reshape: 308
Residue: 308
Reverse: 309
Reverse First: 309
Right: 309
Roll: 310
Rotate: 310
Rotate First: 312
Same: 313
Shape 313
Signum: 314
Split: 314
Subtract: 314
Table: 315
Take: 316
Take with Axes: 317
Times: 318
Transpose (Monadic): 318
Transpose (Dyadic): 318
Type: 319
Union: 320
Unique: 320
Without: 320
Zilde: 320
Chapter 5: Primitive Operators. 321
Operator Syntax. 321
Axis Specification. 322
Operators (A-Z). 323
Assignment (Modified): 323
Assignment (Indexed Modified): 324
Assignment (Selective Modified): 325
Axis (with Monadic Operand): 325
Axis (with Dyadic Operand): 326
Commute: 329
Composition (Form I): 330
Composition (Form II): 331
Composition (Form III): 332
Composition (Form IV): 332
Each (with Monadic Operand): 333
Each (with Dyadic Operand): 334
Inner Product: 335
Outer Product: 336
Power Operator: 337
Reduce: 339
Reduce First: 342
Reduce N -Wise: 342
Scan: 343
Scan First: 344
Spawn: 345
Variant: 346
I-Beam: 349
Syntax Colouring: 350
Core to APLCore: (UNIX only). 351
Number of Threads: 352
Parallel Execution Threshold: 352
Memory Manager Statistics: 353
Update DataTable: 354
Read DataTable: 357
Export To Memory: 360
Component Checksum Validation: 360
Fork New Task: (UNIX only) 361
Change User: (UNIX only) 362
Reap Forked Tasks: (UNIX only). 363
Signal Counts: (UNIX only) 365
Thread Synchronisation Mechanism: 365
Random Number Generator: 366
Chapter 6: System Functions \& Variables 367
System Variables. 369
System Namespaces. 370
System Constants 371
System Functions. 372
Character Input/Output: 380
Evaluated Input/Output: 382
Underscored Alphabetic Characters: 384
Alphabetic Characters: 384
Account Information: 385
Account Name: 385
Arbitrary Output: 386
Attributes: 387
Atomic Vector: 391
Atomic Vector - Unicode: 391
Base Class: 394
Class: 395
Clear Workspace: 397
Execute Windows Command 398
Start Windows Auxiliary Processor: 400
Canonical Representation: 402
Change Space: 404
Comparison Tolerance: 406
Copy Workspace: 407
Digits: 409
Decimal Comparison Tolerance: 409
Display Form: 410
Division Method: 413
Delay: 413
Diagnostic Message: 414
Extended Diagnostic Message: 415
Dequeue Events: 420
Data Representation (Monadic): 423
Data Representation (Dyadic): 424
Edit Object: 425
Event Message: 425
Exception: 426
Expunge Object: 427
Export Object: 429
File Append Component: 430
File System Available: 430
File Check and Repair: 431
File Copy: 432
File Create: 434
File Drop Component: 436
File Erase: 437
File History: 437
File Hold: 439
Fix Script: 440
Component File Library: 441
Format (Monadic): 442
Format (Dyadic): 443
File Names: 450
File Numbers: 451
File Properties: 452
Floating-Point Representation: 455
File Read Access: 457
File Read Component Information: 458
File Read Component: 458
File Rename: 459
File Replace Component: 460
File Resize: 461
File Size: 462
File Set Access: 462
File Share Tie: 463
Exclusive File Tie: 464
File Untie: 465
Fix Definition: 465
Instances: 466
Index Origin: 467
Key Label: 468
Line Count: 468
Load Workspace: 469
Lock Definition: 470
Latent Expression: 471
Map File: 471
Migration Level: 473
Set Monitor: 475
Query Monitor: 476
Name Association: 477
Native File Append: 505
Name Classification: 506
Native File Create 517
Native File Erase: 517
New Instance: 518
Name List: 519
Native File Lock 523
Native File Names: 525
Native File Numbers: 525
Enqueue Event: 526
Nested Representation: 528
Native File Read: 529
Native File Rename 531
Native File Replace 531
Native File Resize: 533
Create Namespace: 533
Namespace Indicator 535
Native File Size: 535
Native File Tie: 536
Null Item: 537
Native File Untie: 538
Native File Translate 538
Sign Off APL: 539
Variant 539
Object Representation: 540
Search Path: 544
Program Function Key: 546
Print Precision: 547
Profile Application: 548
Print Width: 554
Cross References: 555
Replace: 556
Random Link: 575
Space Indicator: 577
Response Time Limit: 578
Search: 578
Save Workspace: 578
Screen Dimensions: 579
Session Namespace: 579
Execute (UNIX) Command: 580
Start UNIX Auxiliary Processor: 581
State Indicator: 582
Shadow Name: 583
Signal Event: 584
Size of Object: 587
Screen Map 588
Screen Read: 591
Source: 595
State Indicator Stack: 596
State of Object: 597
Set Stop: 599
Query Stop: 600
Set Access Control: 601
Query Access Control: 602
Shared Variable Offer: 603
Query Degree of Coupling: 605
Shared Variable Query: 605
Shared Variable Retract Offer: 606
Shared Variable State: 607
Terminal Control: 608
Thread Child Numbers: 609
Get Tokens: 609
This Space: 611
Current Thread Identity: 612
Kill Thread 612
Current Thread Name: 613
Thread Numbers: 613
Token Pool: 613
Put Tokens: 614
Set Trace: 615
Query Trace: 616
Trap Event: 617
Token Requests: 621
Time Stamp: 622
Wait for Threads to Terminate: 623
Unicode Convert: 624
Using (Microsoft .Net Search Path): 627
Vector Representation: 628
Verify \& Fix Input: 629
Workspace Available: 630
Windows Create Object: 631
Windows Get Property: 634
Windows Child Names: 635
Windows Set Property: 636
Workspace Identification: 637
Window Expose 638
XML Convert: 639
Extended State Indicator: 653
Set External Variable: 654
Query External Variable: 656
Chapter 7:System Commands 657
Introduction. 657
List Classes: 659
Clear Workspace: 659
Windows Command Processor: 660
Save Continuation: 661
Copy Workspace: 662
Change Space: 664
Drop Workspace: 664
Edit Object: 665
List Events: 666
List Global Defined Functions: 666
Display Held Tokens: 667
List Workspace Library: 668
Load Workspace: 669
List Methods: 670
Create Namespace: 670
List Global Namespaces: 671
List Global Namespaces: 671
Sign Off APL: 671
List Global Defined Operators: 671
Protected Copy: 672
List Properties: 673
Reset State Indicator: 673
Save Workspace: 673
Execute (UNIX) Command: 675
State Indicator: 676
Clear State Indicator: 677
State Indicator \& Name List: 677
Thread Identity: 678
List Global Defined Variables: 679
Workspace Identification: 679
Load without Latent Expression: 680
Chapter 8: Error Messages. 681
Introduction. 681
Standard Error Action. 682
APL Errors 683
Operating System Error Messages. 687
Windows Operating System Error Messages 689
APL Error Messages 690
bad ws. 690
cannot create name 690
clear ws. 690
copy incomplete. 690
DEADLOCK 690
defn error 691
DOMAIN ERROR 692
EOF INTERRUPT 692
EXCEPTION 692
FIELD CONTENTS RANK ERROR 693
FIELD CONTENTS TOO MANY COLUMNS. 693
FIELD POSITION ERROR 693
FIELD CONTENTS TYPE MISMATCH 693
FIELD TYPE BEHAVIOUR UNRECOGNISED 693
FIELD ATTRIBUTES RANK ERROR 693
FIELD ATTRIBUTES LENGTH ERROR 693
FULL SCREEN ERROR 693
KEY CODE UNRECOGNISED 694
KEY CODE RANK ERROR 694
KEY CODE TYPE ERROR 694
FORMAT FILE ACCESS ERROR. 694
FORMAT FILE ERROR 694
FILE ACCESS ERROR. 695
FILE ACCESS ERROR CONVERTING. 695
FILE COMPONENT DAMAGED. 695
FILE DAMAGED. 696
FILE FULL 696
FILE INDEX ERROR 696
FILE NAME ERROR 696
FILE NAME QUOTA USED UP. 697
FILE SYSTEM ERROR 697
FILE SYSTEM NO SPACE 697
FILE SYSTEM NOT AVAILABLE 697
FILE SYSTEM TIES USED UP 697
FILE TIE ERROR 698
FILE TIED 698
FILE TIED REMOTELY 698
FILE TIE QUOTA USED UP. 699
FORMAT ERROR 699
HOLD ERROR 699
incorrect command. 700
INDEX ERROR 700
INTERNAL ERROR 701
INTERRUPT 701
is name. 701
LENGTH ERROR 702
LIMIT ERROR 702
NONCE ERROR 702
NO PIPES 702
name is not a ws 703
Name already exists 703
Namespace does not exist 703
not copied name. 704
not found name. 704
not saved this ws is name 704
OPTION ERROR 705
PROCESSOR TABLE FULL 705
RANK ERROR 706
RESIZE 706
name saved date time. 706
SYNTAX ERROR 707
sys error number. 708
TIMEOUT. 708
TRANSLATION ERROR 708
TRAP ERROR 708
too many names 709
VALUE ERROR 709
warning duplicate label. 709
warning duplicate name 710
warning pendent operation. 710
warning label name present. 710
warning unmatched brackets. 711
warning unmatched parentheses. 711
was name. 711
WS FULL 712
ws not found 712
ws too large. 712
Operating System Error Messages. 713
FILE ERROR 1 Not owner. 713
FILE ERROR 2 No such file. 713
FILE ERROR 5 IO error 713
FILE ERROR 6 No such device. 713
FILE ERROR 13 Permission denied. 713
FILE ERROR 20 Not a directory 713
FILE ERROR 21 Is a directory. 714
FILE ERROR 23 File table overflow. 714
FILE ERROR 24 Too many open. 714
FILE ERROR 26 Text file busy. 714
FILE ERROR 27 File too large 714
FILE ERROR 28 No space left. 714
FILE ERROR 30 Read only file. 715
Appendices: PCRE Specifications. 717
Appendix A - PCRE Syntax Summary 718
Symbolic Index 725
Index 731

Chapter 1:

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain objects, namely operators, functions and variables defined by the user. APL expressions may include references to operators, functions and variables provided by APL. These objects do not reside in the workspace, but space is required for the actual process of evaluation to accommodate temporary data. During execution, APL records the state of execution through the STATE INDICATOR which is dynamically maintained until the process is complete. Space is also required to identify objects in the workspace in the SYMBOL TABLE. Maintenance of the symbol table is entirely dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may subsequently be loaded, or objects may be selectively copied from a saved workspace into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise unrestricted. See your UNIX documentation for details.

Under Windows, Dyalog APL workspaces are stored in files with the suffix ".DWS". However, they are referred to from within APL by only the first part of the file name which must conform to Windows file naming rules.

Namespaces

Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to nested workspaces.

They provide the same sort of facility for workspaces as directories do for filesystems. The analogy might prove helpful:

Operation	MS-DOS	Namespace
Create	MKDIR"apl""Dyalog")NS or DNS
Change	CD)CS or पCS
Relative name	DIR1\DIR2\FILE	NS1.NS2.OBJ
Absolute name	\DIR\FILE	\#.NS.OBJ
Name separator	\backslash	.
Top (root) object	\backslash	$\#$
Parent object	.	$\# \#$

Namespaces bring a number of major benefits:

They provide static (as opposed to dynamic) local names. This means that a defined function can use local variables and functions which persist when it exits and which are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to organise the workspace in a tidy fashion. This helps to promote an object oriented programming style.

APL's traditional name-clash problem is ameliorated in several ways:

- Workspaces can be arranged so that there are many fewer names at each namespace level. This means that when copying objects from saved workspaces there is a much reduced chance of a clash with existing names.
- Utility functions in a saved workspace may be coded as a single namespace and therefore on being copied into the active workspace consume only a single name. This avoids the complexity and expense of a solution which is sometimes used in 'flat' workspaces, where such utilities dynamically fix local functions on each call.
- In flat APL, workspace administration functions such as WSDOC must share names with their subject namespace. This leads to techniques for trying to avoid name clashes such as using obscure name prefixes like ' $\underline{\Delta} \underline{L} 1$ ' This problem is now virtually eliminated because such a utility can operate exclusively in its own namespace.

The programming of GUI objects is considerably simplified.

- An object's callback functions may be localised in the namespace of the object itself.
- Static variables used by callback functions to maintain information between calls may be localised within the object.

This means that the object need use only a single name in its namespace.

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrangement of items, each of which may be a single number, a single character, a namespace reference (ref), another array, or the $\overline{0}$ R of an object. An array which is part of another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank, shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

- An array with 0 axes (rank 0) is called a scalar.
- An array with 1 axis (rank 1) is called a vector.
- An array with 2 axes (rank 2) is called a matrix.
- An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along each axis of an array is called its shape. The shape of an array is itself a vector. Its first item is the length of the first axis, its second item the length of the second axis, and so on. An array, whose length along one or more axes is zero, is called an empty array.

Depth

An array whose items are all simple scalars (i.e. single numbers, characters or refs) is called a simple array. If one or more items of an array is not a simple scalar (i.e. is another array, or a DOR), the array is called a nested array. A nested array may contain items which are themselves nested arrays. The degree of nesting of an array is called its depth. A simple scalar has a depth of 0 . A simple vector, matrix, or multidimensional array has depth 1 . An array whose items are all depth 1 subarrays has depth 2 ; one whose items are all depth 2 subarrays has depth 3 , and so forth.

Type

An array, whose elements are all numeric, is called a numeric array; its TYPE is numeric. A character array is one in which all items are characters. An array whose items contain both numeric and character elements is of MIXED type.

Numbers

Dyalog APL supports both real numbers and complex numbers.

Real Numbers

Numbers are entered or displayed using conventional decimal notation (e.g. 299792.458) or using a scaled form (e.g. 2.999792458E5).

On entry, a decimal point is optional if there is no fractional part. On output, a number with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:
a. an integer or decimal number called the mantissa,
b. the letter E or e ,
c. an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

1223.2423 .02 .145 E 2
1223.2423214 .5

Negative numbers are preceded by the high minus (${ }^{-}$) symbol, not to be confused with the minus (-) function. In scaled form, both the mantissa and the scale may be negative.

Example

```
    -22 2.145E-2 -10.25
```

$-220.02145-10.25$

Complex Numbers

Complex numbers use the J notation introduced in IBM APL2 and are written as aJb or $a j b$ (without spaces) where the real and imaginary parts a and b are written as described above. The capital J is always used to display a value.

Examples

```
    2+-1*.5
```

2 J 1
$0.3 \mathrm{~J} 0.5^{3 \mathrm{j} .5}$
1. $2 \mathrm{E} 5 \mathrm{~J}^{-} 4 \mathrm{E}^{-4}$
$120000 \mathrm{~J}=0.0004$

The empty vector ($\imath 0$) may be represented by the numeric constant θ called ZILDE.

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are not displayed on output. The APL quote character itself must be entered as a pair of APL quotes.

```
Examples
    'DYALOG APL'
DYALOG APL
    'I DON''T KNOW'
I DON'T KNOW
    '*'
*
```


Enclosed Elements

An array may be enclosed to form a scalar element through any of the following means:

- by the enclose function (c)
- by inclusion in vector notation
- as the result of certain functions when applied to arrays

Examples

$\left.123 \begin{array}{l}\text { (} ⿻ 12\end{array} \mathrm{ABC}^{2} 3\right), c^{\prime} A B C^{\prime}$						
			$\left(\begin{array}{lll} 1 & 2 & 3 \end{array}\right)$			
1	2	3				
			22	3		
1	1		2	1	3	
2	1	2	2	2	3	

Legal Names

APL objects may be given names. A name may be any sequence of characters, starting with an alphabetic character, selected from the following:

0123456789(but not as the $1^{\text {st }}$ character in a name)
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz

àáããäåæçèéêë i îî̉ðñóôôõöøùúûüp
$\Delta \underline{\Delta}$
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Note that using a standard Unicode font (rather than APL385 Unicode used in the table above), the last row above would appear as the circled alphabet, (A) to (2).

Examples

Legal	Illegal
THIS \triangle IS $\triangle A \triangle N A M E$	BAD NAME
X1233	$3+21$
SALES	S!HIPRICE
pjb_1	1_pjb

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be assigned an array by specification with the left arrow (\leftarrow).

Examples

A ' ${ }^{\prime}$ CHIPS WITH EVERYTHING'
A
CHIPS WITH EVERYTHING
$X \quad Y \leftarrow ' O N E ' \quad$ 'TWO'
X
ONE
Y
TWO

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are the enclosed arrays resulting from each expression. This is known as VECTOR (or STRAND) NOTATION. Each expression in the series may consist of one of the following:
a. a single numeric value;
b. single character, within a pair of quotes;
c. more than one character, within a pair of quotes;
d. the name of a variable;
e. the evaluated input symbol \square;
f. the quote-quad symbol [;
g. the name of a niladic, defined function yielding a result;
h. any other APL expression which yields a result, within parentheses.

Examples

$$
\rho A \leftarrow 2 \div 10
$$

3
مTEXT↔'ONE' 'TWO'
2
Numbers and characters may be mixed:

```
        \rhoX\leftarrow'THE ANSWER IS ' 10
2
    X[1]
    THE ANSWER IS
        X[2] + 32
4 2
```

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair ' \leftrightarrow ' indicates the phrase 'is equivalent to'.

```
1 2 ↔ (1)(2) ↔ 1 (2) }\leftrightarrow\mathrm{ (1) 2
2'X'3}\leftrightarrow2 'X' 3 ↔ (2) ('X') (3
1 (2+2) ↔(1) ((2+2)) ↔((1))
```

Vector notation may be used to define an item in vector notation:

```
pX \leftarrow 1 (2 3 4) ('THIS' 'AND' 'THAT')
```

3
234
X[3]
THIS AND THAT
Expressions within parentheses are evaluated to produce an item in the vector:
Y
4
4 IS 4
The following identity holds:
$A \quad B \quad C \quad \leftrightarrow(\subset A),(\subset B), \subset C$

Structuring of Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input only in scalar or vector form. Structural functions may produce arrays with a higher rank. The Structural functions are reshape (ρ), ravel, laminate and catenate (,), reversal and rotation (ϕ), transpose (ϕ), mix and take (\uparrow), split and drop (\downarrow), and enclose (c). These functions are described in Chapter 4.

Examples

```
2 2p1 2 3 4
```

12
34
22 4م'ABCDEFGHIJKLMNOP'
ABCD
EFGH
IJKL
MNOP

```
        \downarrow2 4\rho'COWSHENS'
    COWS HENS
```


Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin. A number is separated from the next adjacent element by a single space. The number of significant digits to be printed is determined by the system variable [PP whose default value is 10 . The fractional part of the number will be rounded in the last digit if it cannot be represented within the print precision. Trailing zeros after a decimal point and leading zeros will not be printed. An integer number will display without a decimal point.

Examples

```
    0.1 1.0 1.12
0.111.12
    'A' 2 'B' 'C'
A 2 BC
    \div3 2 6
0.3333333333 0.5 0.1666666667
```

If a number cannot be fully represented in DPP significant digits, or if the number requires more than five leading zeros after the decimal point, the number is represented in scaled form. The mantissa will display up to DPP significant digits, but trailing zeros will not be displayed.

Examples

$$
\begin{gathered}
\square P P+3 \\
123 \quad \begin{array}{llllll}
123 & 1234 & 12345 & 0.12345 & 0.00012345 & 0.00000012345 \\
1.23 E 3 & 1.23 E 4 & 0.123 & 0.000123 \quad 1.23 E^{-} 7
\end{array}
\end{gathered}
$$

Simple matrices are displayed in rectangular form, with one line per matrix row. All elements in a given column are displayed in the same format, but the format and width for each column is determined independently of other columns. A column is treated as numeric if it contains any numeric elements. The width of a numeric column is determined such that the decimal points (if any) are aligned; that the E characters for scaled formats are aligned, with trailing zeros added to the mantissae if necessary, and that integer forms are right-adjusted one place to the left of the decimal point column (if any). Numeric columns are right-justified; a column which contains no numeric elements is left-justified. Numeric columns are separated from their neighbours by a single column of blanks.

```
Examples
    2 40'HANDFIST'
HAND
FIST
    rrrralllllll
    2 3p2 4 6.1 8 10.24 12
2 6 6.1
8 10.24 12
```

```
    2 404 'A' 'B' 5 -0.000000003 'C' 'D' 123.56
```

 2 404 'A' 'B' 5 -0.000000003 'C' 'D' 123.56
 4EO AB 5
 4EO AB 5
 -3E-9 CD 123.56

```
-3E-9 CD 123.56
```

In the display of non-simple arrays, each element is displayed within a rectangle such that the rows and columns of the array are aligned. Simple items within the array are displayed as above. For non-simple items, this rule is applied recursively, with one space added on each side of the enclosed element for each level of nesting.

Examples

乙 3
123
c て 3
123
ccı3
123
ONE ('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' 4)
$24{ }^{4}$ 'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR 4
Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by one blank line, and hyper-planes of higher dimensions are separated by increasing numbers of blank lines. In all other respects, multi-dimensional arrays are displayed in the same manner as matrices.

Examples

$2340 r 24$				
1	2	3	4	4
5	6	7		8
9	10	11	12	
13	14	15	16	
17	18	19	20	
21	22	23		
		31	11	$13 p^{\prime}$
THE				
RED				

The power of this form of display is made apparent when formatting informal reports.

```
Examples
    +AREAS*'West' 'Central' 'East'
    West Central East
    +PRODUCTS*'Biscuits' 'Cakes' 'Buns' 'Rolls'
    Biscuits Cakes Buns Rolls
        SALES<50 5.25 75 250 20.15 900 500
        SALES,\leftarrow80.98 650 1000 90.03 1200
        +SALES\leftarrow4 3pSALES
        50 5.25 75
    250 20.15 900
    500 80.98 650
1000 90.03 1200
\begin{tabular}{lrrr} 
& ' & PRODUCTS & \multicolumn{2}{c}{, AREAS SALES } \\
& West & Central & East \\
Biscuits & 50 & 5.25 & 75 \\
Cakes & 250 & 20.15 & 900 \\
Buns & 500 & 80.98 & 650 \\
Rolls & 1000 & 90.03 & 1200
\end{tabular}
```

If the display of an array is wider than the page width, as set by the system variable DPW, it will be folded at or before DPW and the folded portions indented six spaces. The display of a simple numeric or mixed array may be folded at a width less than —PW so that individual numbers are not split across a page boundary.

Example

$$
\square P W \leftarrow 40
$$

The Display Function

The DISPLAY function is implemented as a user command]display distributed with Dyalog APL and may be used to illustrate the structure of an array.]display is monadic. Its result is a character matrix containing a pictorial representation of its argument.]display is used throughout this manual to illustrate examples. An array is illustrated with a series of boxes bordering each sub-array. Characters embedded in the border indicate rank and type information. The top and left borders contain symbols that indicate its rank. A symbol in the lower border indicates type. The symbols are defined as follows:
\rightarrow Vector.
$\downarrow \quad$ Matrix or higher rank array.
\ominus Empty along last axis.
$\phi \quad$ Empty along other than last axis.
$\epsilon \quad$ Nested array.
~ Numeric data.

- Character data.
+ Mixed character and numeric data.
∇ DOR object.
\# array of refs.
Jdisplay 'ABC' (1401234)

Prototypes and Fill Items

Every array has an associated prototype which is derived from the array's first item.
If the first item is a number, the prototype is 0 . Otherwise, if the first item is a character, the prototype is ' ' (space). Otherwise, if the first item is a (ref to) an instance of a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the prototype is defined recursively as the prototype of each of the array's first item.

Examples:

Array	Prototype
123.4	0
23 5p'hello'	
99 'b' 66	0
(12) (3 4 5)	00
((12)3) (4 5 6)	(0 0) 0
'hello' 'world'	' '
ZNEW MyClass	MyClass
(88(DNEW MyClass)'X')7	0 MyClass

Fill Items

Fill items for an overtake operation, are derived from the argument's prototype. For each 0 or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and for each class reference in the prototype, there is a ref to a (newly constructed and distinct) instance of that class that is initialised by the niladic (default) constructor for that class, if defined.

Examples:

```
    4^1 2
120}
    4^'ab'
ab
    4个(1 2)(3 4 5)
    12 3 4 5 0 0 0 0
    2^\squareNEW MyClass
    #.[Instance of MyClass] #.[Instance of MyClass]
```

In the last example, two distinct instances are constructed (the first by DNEW and the second by the overtake).

Fill items are used in a number of operations including:

- First (O or \uparrow) of an empty array
- Fill-elements for overtake
- For use with the Each operator on an empty array

Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols or constants or names representing arrays (variables) or functions. An expression which produces an array is called an ARRAY EXPRESSION. An expression which produces a function is called a FUNCTION EXPRESSION. Some expressions do not produce a result.

An expression may be enclosed within parentheses.
Evaluation of an expression proceeds from right to left, unless modified by parentheses. If an entire expression results in an array that is not assigned to a name, then that array value is displayed. (Some system functions and defined functions return an array result only if the result is assigned to a name or if the result is the argument of a function or operator.)

Examples

$$
x+2 \times 3-1
$$

$$
2 \times 3-1
$$

4
$(2 \times 3)-1$
5
Either blanks or parentheses are required to separate constants, the names of variables, and the names of defined functions which are adjacent. Excessive blanks or sets of parentheses are redundant, but permitted. If F is a function, then:

$$
F 2 \leftrightarrow F(2) \leftrightarrow(F) 2 \leftrightarrow(F)(2) \leftrightarrow F \quad(2) \leftrightarrow F((2))
$$

Blanks or parentheses are not needed to separate primitive functions from names or constants, but they are permitted:

$$
-2 \leftrightarrow(-)(2) \leftrightarrow(-) 2
$$

Blanks or parentheses are not needed to separate operators from primitive functions, names or constants. They are permitted with the single exception that a dyadic operator must have its right argument available when encountered. The following syntactical forms are accepted:

$$
(+. \times) \leftrightarrow(+) . x \leftrightarrow+.(\times)
$$

The use of parentheses in the following examples is not accepted:

$$
+(.) \times \text { or } \quad(+.) \times
$$

Functions

A function is an operation which is performed on zero, one or two array arguments and may produce an array result. Three forms are permitted:

- NILADIC defined for no arguments
- MONADIC defined for a right but not a left argument
- DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.
The name of a non-niladic function is AMBIVALENT; that is, it potentially represents both a monadic and a dyadic function, though it might not be defined for both. The usage in an expression is determined by syntactical context. If the usage is not defined an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is the result of the entire expression to its right which must be an array. A dyadic function has short scope on the left; that is, the left argument of the function is the array immediately to its left. Left scope may be extended by enclosing an expression in parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be displayed on completion of evaluation of the expression. This applies on assignment to a variable name. It applies for certain system functions, and may also apply for defined functions.

Examples

$10 \times 5-2 \times 4$
-30
2×4
8
5-8
-3
10×-3
-30
$(10 \times 5)-2 \times 4$
42

Defined Functions

Functions may be defined with the system function $\square F X$, or with the function editor. A function consists of a HEADER which identifies the syntax of the function, and a BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional) arguments. If a function is ambivalent, it is defined with two arguments but with the left argument within braces ($\}$). If an ambivalent function is called monadically, the left argument has no value inside the function. If the explicit result is to be suppressed for display purposes, the result is shown within braces. A function need not produce an explicit result. Refer to Chapter 2 for further details.

Example

$\nabla R \leftarrow\{A\}$ FOO B
[1]
$R \leftrightarrow{ }^{\prime}$ MONADIC' 'DYADIC'[DIO+0 $\left.\neq \square N C^{\prime} A^{\prime}\right]$
[2] ∇
FOO 1
MONADIC
'X' FOO 'Y'
DYADIC
Functions may also be created by using assignment (\leftarrow).

Function Assignment \& Display

The result of a function-expression may be given a name. This is known as FUNCTION ASSIGNMENT (see also "Dynamic Functions \& Operators" on page 112). If the result of a function-expression is not given a name, its value is displayed. This is termed FUNCTION DISPLAY.

Examples

	PLUS ++
+	PLUS
+	SUM $++/$
$+/$	SUM

Function expressions may include defined functions and operators. These are displayed as a ∇ followed by their name.

Example

[1] $R \leftarrow(+/ X) \div \rho X$
∇

MEAN
∇ MEAN
AVERAGE $-M E A N$
AVERAGE
∇ MEAN
AVG<MEAN。, AVG
\quad MEAN \circ,

Operators

An operator is an operation on one or two operands which produces a function called a DERIVED FUNCTION. An operand may be a function or an array. Operators are not ambivalent. They require either one or two operands as applicable to the particular operator. However, the derived function may be ambivalent. The derived function need not return a result. Operators have higher precedence than functions. Operators have long scope on the left. That is, the left operand is the longest function or array expression on its left. The left operand may be terminated by:

1. the end of the expression
2. the right-most of two consecutive functions
3. a function with an array to its left
4. an array with a function to its left
an array or function to the right of a monadic operator.
A dyadic operator has short scope on the right. That is, the right operand of an operator is the single function or array on its right. Right scope may be extended by enclosing an expression in parentheses.

Examples

```
    \rho"X\leftarrow'WILLIAM' 'MARY' 'BELLE'
    4 5
    11
        (\rho\circ\rho)"X
    1
[1]
        \square०*o\VR"'PLUS' 'MINUS'
    \nabla R&A PLUS B
        R<A+B
        \nabla
        \nabla R\leftarrowA MINUS B
[1]
        R\leftarrowA-B
    \nabla
        PLUS/1 2 3 4
1 0
```


Defined Operators

Operators may be defined with the system function $\square F X$, or with the function editor. A defined operator consists of a HEADER which identifies the syntax of the operator, and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have one or two arguments, and may or may not produce a result. The header syntax defines the operator name, its operand(s), the argument(s) to its derived function, and the result (if any) of its derived function. The names of the operator and its operand(s) are separated from the name(s) of the argument(s) to its derived function by parentheses.

Example

```
[1] }R\leftarrow(A F B)(A G B
    \nabla
```

 \(\nabla R \leftarrow A(F\) AND G)B
 The above example shows a dyadic operator called AND with two operands (F and $G)$. The operator produces a derived function which takes two arguments (A and B), and produces a result (R).

$$
12+\mathrm{AND} \div 4
$$

163
Operands passed to an operator may be either functions or arrays.
12 (3 AND 5) 4
12341254
12 (x AND 5) 4
481254

Complex Numbers

A complex number is a number consisting of a real and an imaginary part which is usually written in the form $\boldsymbol{a}+\boldsymbol{b i}$, where \boldsymbol{a} and \boldsymbol{b} are real numbers, and \boldsymbol{i} is the standard imaginary unit with the property $\boldsymbol{i}^{2}=-1$.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of a complex number which is written as aJb or a jb (without spaces). The former representation (with a capital J) is always used to display a value.

Notation

$$
2+^{-1} 1 * .5
$$

2J1
$0.3 \mathrm{~J} 0.5^{.3 \mathrm{j} .5}$

1. $2 \mathrm{E} 5 \mathrm{~J}^{-} 4 \mathrm{E}^{-4}$
$120000 \mathrm{~J}^{-0.0004}$

Arithmetic

The arithmetic primitive functions handle complex numbers in the appropriate way.

$$
2 \mathrm{j} 3+.3 \mathrm{j} .5 \text { ค }(\mathrm{a}+\mathrm{bi})+(\mathrm{c}+\mathrm{di})=(\mathrm{a}+\mathrm{c})+(\mathrm{b}+\mathrm{d}) \mathrm{i}
$$

2.3J3.5
$1.7 J^{-} 2^{2 j 3-.3 j 5} ค(a+b i)-(c+d i)=(a-c)+(b-d) i$

$$
\begin{aligned}
2 j 3 \times .3 j .5 \rho_{\rho}^{\rho}(a+b i)(c+d i) & =a c+b c i+a d i+b d i^{2} \\
& =(a c-b d)+(b c+a d) i
\end{aligned}
$$

-0.9J1.9

The absolute value, or magnitude of a complex number is naturally obtained using the Magnitude function
| 3 j 4
5
Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...
$+3 j 4$
$3 \mathrm{~J}-4$
... which when multiplied by the complex number itself, produces the square of its magnitude.

$$
3 j 4 \times 3 j-4
$$

25
Furthermore, adding a complex number and its conjugate produces a real number:

$$
3 j 4+3 j-4
$$

6
The famous Euler's Identity $e^{i \pi}+1=0$ may be expressed as follows:

$$
1+\star 00 \mathrm{j} 1 \text { ค Euler Identity }
$$

0

Different Result for Power

IFrom Version 13.0 onwards, the implementation of $X * Y$ (Power) gives a different answer for negative real X than in all previous Versions of Dyalog APL. This change is however in accordance with the ISO/EEC 13751 Standard for Extended APL.

In Version 13.0 onwards, the result is the principal value; whereas in previous Versions the result is a negative or positive real number or DOMA IN ERROR. The following examples illustrate this point:
-2 4

$$
-8 * 12 \div 3 \quad \text { \& Version } 12.1
$$

-8*12 $\div 3 \quad$ ค Version 13.0
1J1.732050808-2J3.464101615
$*(12 \div 3) \times \oplus-8 \quad$ ค Version 13.0
1J1.732050808 -2J3.464101615

Circular functions

The basic set of circular functions $X \circ Y$ cater for complex values in Y, while the following extended functions provide specific features for complex arguments. Note that a and b are the real and imaginary parts of Y respectively and θ is the phase of Y..

$(-X) \circ Y$	X	$X \circ Y$
$-8 \circ Y$	8	$(-1+Y * 2) * 0.5$
Y	9	a
$+Y$	10	$I Y$
$Y \times 0 J 1$	11	b
$\times Y \times 0 J 1$	12	θ

Note that 90 Y and 110 Y return the real and imaginary parts of Y respectively:

$$
591103.5 \mathrm{~J}^{-1} 1.2
$$

$3.5-1.2$

```
    9 110.03.5J-1.2 2J3 3J4
3.5 2 3
-1.234
```


Comparison

In comparing two complex numbers X and $Y, X=Y$ is 1 if the magnitude of $X-Y$ does not exceed DCT times the larger of the magnitudes of X and Y; geometrically, $X=Y$ if the number smaller in magnitude lies on or within a circle centred on the one with larger magnitude, having radius $\bar{C} T$ times the larger magnitude.

As with real values, complex values sufficiently close to Boolean or integral values are accepted by functions which require Boolean or integral values. For example:

1212

$$
2 \mathrm{j} 1 \mathrm{e}^{-14} \mathrm{\rho} 12
$$

0
Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary float-ing-point numbers, regardless of the setting of $\square F R$. Comparisons between complex numbers and decimal floating-point numbers will require conversion of the decimal number to binary to allow the comparison. When $\square F R=1287$, comparisons are always subject to $\overline{D C T}$, not $\square \mathrm{CT}$ - regardless of the data type used to represent a number.

This only really comes into play when determining whether the imaginary part of a complex number is so small that it can be considered to be on the real plane. However, Dyalog recommends that you do not mix the use of complex and decimal numbers in the same component of an application.

128 Bit Decimal Floating-Point Support Introduction

The original IEE-754 64-bit binary floating point (FP) data type (also known as type number 645), that is used internally by Dyalog APL to represent floating-point values, does not have sufficient precision for certain financial computations - typically involving large currency amounts. The binary representation also causes errors to accumulate even when all values involved in a calculation are "exact" (rounded) decimal numbers, since many decimal numbers cannot be accurately represented regardless of the precision used to hold them. To reduce this problem, Dyalog APL includes support for the 128-bit decimal data type described by IEEE-754-2008 as an alternative representation for floating-point values.

System Variable: DF R

Computations using 128-bit decimal numbers require twice as much space for storage, and run more than an order of magnitude more slowly on platforms which do not provide hardware support for the type. At this time, hardware support is only available from IBM (Power chips starting with the "P6", and recent " z " series mainframes). Even with hardware support, a slowdown of a factor of 4 can be expected. For this reason, Dyalog allows users to decide whether they need the higher-precision decimal representation, or prefer to stay with the faster and smaller binary representation.

A new system variable DFR (for Floating-point Representation) can be set to the value 645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal FP. The default value of $\square F R$ is configurable.

Simply put, the value of DFR decides the type of the result of any floating-point calculation that APL performs. In other words, when entered into the session:

```
\squareFR = \DR 1.234 & Type of a floating-point constant
\squareFR = पDR 3\div4 & Type of any floating-point result
```

DFR has workspace scope, and may be localised. If so, like most other system variables, it inherits its initial value from the global environment.

However: Although DFR can vary, the system is not designed to allow "seamless" modification during the running of an application and the dynamic alteration of $\square F R$ is not recommended. Strange effects may occur. For example, the type of a constant contained in a line of code (in a function or class), will depend on the value of $\square F R$ when the function is fixed. Similarly, a constant typed into a line in the Session is evaluated using the value of CFR that pertained before the line is executed. Thus, it would be possible for the first line of code above to return 0 , if it is in the body of a function. If the function was edited and while suspended and execution is resumed, the result would become 1 . Also note:

```
DFR<1287
x+1\div3
DFR<645
x=1\div3
```

1
The decimal number has 17 more 3 s . Using the tolerance which applies to binary floats (type 645), the numbers are equal. However, the "reverse" experiment yields 0 , as tolerance is much narrower in the 128 -bit universe:

```
DFR+645
x<1\div3
DFR<1287
x=1\div3
```

0
Since DFR can vary, it will be possible for a single workspace to contain floatingpoint values of both types (existing variables are not converted when $\square F R$ is changed). For example, an array that has just been brought into the workspace from external storage may have a different type from DFR in the current namespace. Conversion (if necessary) will only take place when a new floating-point array is generated as the result of "a calculation". The result of a computation returning a floating-point result will not depend on the type of the arrays involved in the expression: $\triangle F R$ at the time when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

```
DFR<1287
x+1.1 2.2 3.3
DFR+645
Dr x
Ddr \(2 \uparrow x\)
```

1287
1287
128-bit decimal numbers not only have greater precision (roughly 34 decimal digits); they also have significantly larger range- from ${ }^{-1 E} 6145$ to 1 E6145. Loss of precision is accepted on conversion from 645 to 1287 , but the magnitude of a number may make the conversion impossible, in which case a DOMAIN ERROR is issued:

```
DFR*1287
x+1E1000
DFR+645
x+0
```

DOMAIN ERROR
WARNING: The use of COMPLEX numbers when DFR is 1287 is not recommended, because:

- any 128 -bit decimal array into which a complex number is inserted or appended will be forced in its entirety into complex representation, potentially losing precision
- all comparisons are done using IDCT when DFR is 1287 , and this is equivalent to 0 for complex numbers.

Conversion between Decimal and Binary

Conversion of data from Binary to Decimal is logically equivalent to formatting, and the reverse conversion is equivalent to evaluating input. These operations are performed according to the same rules that are used when formatting (and evaluating) numbers with DPP set to 17 (guaranteeing that the decimal value can be converted back to the same binary bit pattern). Because the precision of decimal floating-point numbers is much higher, there will always be a large number of potential decimal values which map to the same binary number: As with formatting, the rule is that the SHORTEST decimal number which maps to a particular binary value will be used as its decimal representation.

Data in component files will be stored without conversion, and only converted when a computation happens. It should be stored in decimal form if it will repeatedly be used by application code in which DF Rhas the value 1287. Even in applications which use decimal floating point everywhere, reading old component files containing arrays of type 645 , or receiving data via $\square N A$, the .Net interface or other external sources, will allow binary floating-point values to enter the system and require conversion.

DDCT - Decimal Comparison Tolerance

When DFRhas the value 1287, the system variable CDCT will be used to specify comparison tolerance. The default value of DDCT is $1 \mathrm{E}^{-} 28$, and the maximum value is $2.3283064365386962890625 \mathrm{E}^{-1} 10$ (the value is chosen to avoid fuzzy comparison of 32 -bit integers).

Passing floating-point values using DNA

ZNA supports the data type "D" to represent the Densely Packed Decimal (DPD) form of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard. Dyalog has decided to use DPD, which is the format used by IBM for hardware support, on ALL platforms, although "Binary Integer Decimal" (BID) is the format that Intel libraries use to implement software libraries to do decimal arithmetic. Experiments have shown that the performance of 128-bit DPD and BID libraries are very similar on Intel platforms. In order to avoid the added complication of having two internal representations, Dyalog has elected to go with the hardware format, which is expected to be adopted by future hardware implementations.

The support libraries for writing AP's and DLL's include new functions to extract the contents of a value of type D as a string or double-precision binary "float" - and convert data to D format.

Decimal Floats and Microsoft.NET

The Microsoft.NET framework contains a type named System.Decimal, which implements decimal floating-point numbers. However, it uses a different internal format from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will perform arithmetic on data represented using the "Binary Integer Decimal" format. All computations performed by the Dyalog.Dec 128 class will produce exactly the same results as if the computation was performed in APL. A "DCT" property allows setting the comparison tolerance to be used in comparisons, Ceiling/Floor, etc).

The Dyalog class is modelled closely after the existing System.Decimal type, providing the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals, Finalize, Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode, MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*, Truncate, TryParse) and operators (Addition, Decrement, Division, Equality, Explicit, GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan, LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

The "bridge" between Dyalog and .NET is able to cast floating-point numbers to or from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other reasonable casts to integer types etc). Casting a Dyalog.Dec 128 to or from strings will perform a "lossless" conversion.

The .Net type System.Int64 will now always be cast to a 128 -bit decimal number when entering Dyalog APL, regardless of the setting of CFR. So long as no 64-bit arithmetic is performed on such a value, it will remain a 128 -bit number and can be passed back to .Net without loss.

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit reference requires that you identify the object by its full or relative pathname using a
' . ' syntax; for example:
X. NUMB $\leftarrow 88$
sets the variable NUMB in namespace X to 88 .
88 UTIL.FOO 99
calls dyadic function FOO in namespace UTIL with left and right arguments of 88 and 99 respectively. The interpreter can distinguish between this use of ' . ' and its use as the inner product operator, because the leftmost name: UTIL is a (class 9) namespace, rather than a (class 3) function.

The general namespace reference syntax is:
SPACE . SPACE . (...) EXPR
Where SPACE is an expression which resolves to a namespace reference, and EXPR is any APL expression to be resolved in the resulting namespace.

There are two special space names:
\# is the top level or 'Root' namespace.
\#\# is the parent or space containing the current namespace.
$\square S E$ is a system namespace which is preserved across workspace load and clear.

Examples

```
WSDOC.PAGE.NO +\leftarrow 1 A Increment WSDOC page count
#.\squareNL 2 & Variables in root space
UTIL.DFX 'Z\leftarrowDUP A' 'Z\leftarrowA A' A Fix remote function
##.पED'FOO' & Edit function in parent space
ZSE.RECORD & PERS.RECORD & Copy from PERS to ZSE
UTIL.(DEX \NL 2) & Expunge variables in UTIL
(د\squareSE #).(ゅว\downarrow\squareNL 9).(\squareNL 2) ค Vars in first \SE
    9 namespace.
UTIL.ゅSTRING & Execute STRING in UTIL space
```

You may also reference a function or operator in a namespace implicitly using the mechanism provided by DEXPORT (See "Export Object:" on page 429) and DPATH. If you reference a name that is undefined in the current space, the system searches for it in the list of exported names defined for the namespaces specified by पPATH. See."Search Path: " on page 544 for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will be executed within the namespace or ref to the left of the dot.
$X .(C \leftarrow A \times B)$
X.C

101214
161820
NS1.C
101214
161820

Summary

Apart from its use as a decimal separator (3.14), ' \quad ' is interpreted by looking at the type or class of the expression to its left:

Template	Interpretation	Example
\bigcirc.	Outer product	23 ○.× 45
function.	Inner product	$23+. \times 45$
ref.	Namespace reference	23 x.foo 45
array.	Reference array expansion	(x y).Dncc'foo'

Namespace Reference Evaluation

When the interpreter encounters a namespace reference, it:

1. Switches to the namespace.
2. Evaluates the name.
3. Switches back to the original namespace.

If for example, in the following, the current namespace is \#.W, the interpreter evaluates the line:

A $\leftarrow X . Y . D U P$ MAT
in the following way:

1. Evaluate array MAT in current namespace W to produce argument for function.
2. Switch to namespace $X . Y$ within W.
3. Evaluate function DUP in namespace W. X. Y with argument.
4. Switch back to namespace W.
5. Assign variable A in namespace W .

Namespaces and Localisation

The rules for name resolution have been generalised for namespaces.
In flat APL, the interpreter searches the state indicator to resolve names referenced by a defined function or operator. If the name does not appear in the state indicator, then the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace. When a name is referenced, the interpreter searches only those lines of the state indicator which belong to the home namespace. If the name does not appear in any of these lines, the home namespace-global value is assumed.

For example, if \#.FN1 calls XX.FN2 calls \#.FN3 calls XX.FN4, then:
FN1:
is evaluated in \#
can see its own dynamic local names
can see global names in \#
FN2:
is evaluated in $X X$
can see its own dynamic local names
can see global names in XX
FN3:
is evaluated in \#
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in \#
FN4:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

```
    )NS NS1 & Make a namespace called NS1
NS1.A\leftarrow1 }\quad\Omega\mathrm{ and populate it with variables A
NS1.B&2 3pr6 }\quad\textrm{a}\mathrm{ and B
NS1 A expression results in a ref
```

\#.NS 1
You may assign a ref; for example:
$X<$ NS 1
X
\#.NS1
In this case, the display of X informs you that X refers to the named namespace \#.NS1.

You may also supply a ref as an argument to a defined or dynamic function:
[1] FOO ARG
[1] ARG
∇
FOO NS 1
\#.NS1
The name class of a $r e f$ is 9 .

$$
\text { ZNC ' } \mathrm{X} \text { ' }
$$

9
You may use a ref to a namespace anywhere that you would use the namespace itself. For example:

1

> X.A
X.B

123
456

Notice that refs are references to namespaces, so that if you make a copy, it is the reference that is copied, not the namespace itself. This is sometimes referred to as a shallow as opposed to a deep copy. It means that if you change a ref, you actually change the namespace that it refers to.

$$
\begin{aligned}
& X \cdot A+\leftarrow 1 \\
& X \cdot A
\end{aligned}
$$

2
NS 1. A
2
Similarly, a ref passed to a defined function is call-by-reference, so that modifications to the content or properties of the argument namespace using the passed reference persist after the function exits. For example:

```
[1] nsref.B+*nsref.A
```

 \(\nabla\)
 FOO NS1
 NS1.B
 345
678
FOO X
NS 1. B
567
8910

Notice that the expression to the right of a dot may be arbitrarily complex and will be executed within the namespace or ref to the left of the dot.

```
    X.(C\leftarrowA×B)
X.C
```

101214
161820
NS1.C

101214
161820

Unnamed Namespaces

The monadic form of $\square N S$ makes a new (and unique) unnamed namespace and returns a ref to it.

One use of unnamed namespaces is to represent hierarchical data structures; for example, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

```
    JOHN+\squareNS ''
    JOHN
#.[Namespace]
    JOHN.FirstName\leftarrow'John'
    JOHN.FirstName
John
    JOHN.LastName\leftarrow'Smith'
    JOHN.Age +50
```

Data variables for the second record, PAUL, can be established using strand, or vector, assignment:

PAUL-ZNS ''
PAUL. (FirstName LastName Age ${ }^{\prime}$ Paul' 'Brown' 44)
The function SHOW can be used to display the data in each record (the function is split into 2 lines only to fit on the printed page). Notice that its argument is a ref.

```
    R*SHOW PERSON
    [1] R&PERSON.FirstName,' ',PERSON.LastName
    [2] R, & is ',\PhiPERSON.Age
    \nabla
    SHOW JOHN
John Smith is 50
    SHOW PAUL
Paul Brown is 44
```

An alternative version of the function illustrates the use of the :With : EndWith control structure to execute an expression, or block of expressions, within a namespace:

```
    \nabla R+SHOW1 PERSON
[1] :With PERSON
[2] R<FirstName,' ',LastName,' is ',(कAge)
[3] :EndWith
    \nabla
```

 SHOW1 JOHN
 John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply using parentheses.

```
    \(\nabla\) R+SHOW2 PERSON
[1] R<PERSON.(FirstName,' ',LastName,' is ',(कAge))
    \(\nabla\)
    SHOW2 PAUL
Paul Brown is 44
```

Dynamic functions also accept refs as arguments:
SHOW3-\{
$\omega .(F i r s t N a m e, ' ~ ', L a s t N a m e, ' ~ i s ~ ', \Phi A g e)$
\}

SHOW3 JOHN
John Smith is 50

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (ρ).
EMP $\leftarrow J O H N$ PAUL
OEMP pEMP

2
EMP
\#.[Namespace] \#.[Namespace]
Like any other array, an array of refs has name class 2 :

> ZNC 'EMP'

2
Expressions such as indexing and pick return refs that may in turn be used as follows:

```
    EMP[1].FirstName
John
    (2つEMP).Age
4 4
```

The each (*) operator may be used to apply a function to an array of refs:

SHOW"EMP

John Smith is 50 Paul Brown is 44
An array of namespace references (refs) to the left of a '.' is expanded according to the following rule, where x and y are refs, and exp is an arbitrary expression:

$$
(x y) \cdot \exp \rightarrow(x \cdot \exp)(y \cdot \exp)
$$

If exp evaluates to a function, the items of its argument array(s) are distributed to each referenced function. In the dyadic case, there is a 3-way distribution among: left argument, referenced functions and right argument.

Monadic function f :

$$
(x y) . f d e \rightarrow(x . f d)(y . f e)
$$

Dyadic function g :

$$
a b(x y) . g \quad d e \rightarrow(a x . g d)(b y . g e)
$$

An array of refs to the left of an assignment arrow is expanded thus:

$$
(x y) . a \leftarrow c d \rightarrow(x . a \leftarrow c)(y . a \leftarrow d)
$$

Note that the array of refs can be of any rank. In the limiting case of a simple scalar array, the array construct: refs.exp is identical to the scalar construct: ref.exp.

Note that the expression to the right of the '.' pervades a nested array of refs to its left:

$$
((u \text { v) }(x \text { y))}) \cdot \exp \rightarrow((u \cdot \exp)(v \cdot \exp))((x \cdot \exp)(y \cdot \exp))
$$

Note also that with successive expansions (uv). (xyz)...., the final number of 'leaf' terms is the product of the number of refs at each level.

Examples:

JOHN.Children* ${ }^{\text {CNS*'' }}$ ' pJOHN.Children
2
JOHN.Children[1].FirstName ' $^{\prime}$ Andy '
JOHN. Children[1]. Age $\leftarrow 23$
JOHN.Children[2].FirstName ${ }^{-}$'Katherine' JOHN. Children[2].Age -19

PAUL.Children* ${ }^{\text {CNS"' }}$ ' '
PAUL.Children[1].(FirstName Age ${ }^{\prime}$ 'Tom' 25)
PAUL.Children[2].(FirstName Age \leftarrow 'Jamie' 22)
pEMP
2
(دEMP).Children.(FirstName Age)
Andy 23 Katherine 19
]display (2つEMP).Children.(FirstName Age)

EMP.Children $ค$ Is an array of refs \#.[Namespace] \#.[Namespace] \#.[Namespace] ...

EMP.Children. (FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The conformability rules are the same as for scalar (pervasive) dyadic primitive functions such as ' + '. The mechanism can be viewed as a way of naming the parts of a structure.

Examples:

```
    EMP. (FirstName Age)
    JOHN 43 PAUL 44
    EMP.(FirstName Age) \(\leftarrow(\) 'Jonathan' 21)('Pauline' 22)
    EMP. (FirstName Age)
Johnathan 21 Pauline 22
A Distributed assignment is pervasive
    JOHN.Children. (FirstName Age)
    Andy 23 Katherine 19
    JOHN.Children.(FirstName Age) ↔('Andrew' 21)('Kate'
9)
    JOHN.Children.(FirstName Age)
    Andrew 21 Kate 9
```


More Examples:

$((a b)(c d)) \leftarrow(12)(34) \quad ค a \leftarrow 1 \diamond b \leftarrow 2 \diamond c \leftarrow 3 \diamond d \leftarrow 4$

$(i(j k))++12 \quad \rho i+\leftarrow 1 \diamond j+\leftarrow 2 \diamond k+\leftarrow 2$
ค Naming of parts:
((first last) sex (street city state)) $-n \ni p v e c$
ค Distributed assignment in :For loop:
:For (i j) (k l) :In array
ค Ref array expansion:
(x y).(first last) $+(' J o h n ' ~ ' D o e ')(' J o e ' ~ ' B l o w ') ~$
(f1 f2).(b1 b2).Caption*c'OK' 'Cancel'

```
A Structure rearrangement:
```

```
    rotate1\leftarrow{ \rho Simple binary tree rotation.
```

 (a b c) d e \(e+\omega\)
 \(a b(c d e)\)
 \}
 rotate \(3 \leftarrow\{\quad\) a Compound binary tree rotation.
 (a b(c de))f g+w
 (a b c)d(ef g)
 \}

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

$$
\begin{aligned}
& \text { JOHN.PLOT }\left\{\uparrow \omega \rho \cdot{ }^{\prime \prime} \square^{\prime}\right\} \\
& \text { JOHN.PLOT } 10
\end{aligned}
$$

\square
ำ
닌
ㄴำ

ว
ต


```
    (x y).\squareNL 2 3
    varx funy
    (x y).\squareNLc2 3
    \rho x&y: vars&fns
    funx funy
varx vary
    (x y ).(\squareNL`*)c2 3
vars&fns
    varx funx vary funy
        'v'(x y).\squareNL 2 3
    \rho x:v-vars, y:v-fns
    varx
            'vf'(x y).\squareNL 2 3
    varx funy
            'vf'(x y).\squareNLc2 3
    A x:v-vars&fns,
    ค y:f-vars&fns
    varx funy
            x.\squareNL 2 3
                    A depth 0 ref
funx
varx
    (x y).\squareNLc2 3
    A depth 1 refs
    funx funy
    varx vary
        ((u v)(x y )).\squareNLec2 3
                            A depth 2 refs
    funu funv funx funy
    varu varv varx vary
    (1 2)3 4(w(x y)z).+1 2(3 4) & argument
distribution.
    2 3 5 5 7 8
```


Namespaces and Operators

A function passed as operand to a primitive or defined operator, carries its namespace context with it. This means that if subsequently, the function operand is applied to an argument, it executes in its home namespace, irrespective of the namespace from which the operator was invoked or defined.

Examples

VAR $\leftarrow 99$
)NS X
\#. X
$X . V A R \leftarrow 77$
X. DFX'Z↔FN R' 'Z R, VAR'
)NS Y
\#. Y
Y.VAR $\leftarrow 88$
ค Y.VAR
Y. DFX'Z↔(F OP)R' $\quad Z \leftarrow F R^{\prime}$ X.FN"~3
$\begin{array}{llll}177 & 277 & 377\end{array}$
X.FN 'VAR:'

VAR: 77
X.FN Y.OP 'VAR:'

VAR: 77
\pm Y.OP'VAR'
99

Threads

Overview

Dyalog APL supports multithreading - the ability to run more than one APL expression at the same time.

This unique capability allows you to perform background processing, such as printing, database retrieval, database update, calculations, and so forth while at the same time perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.

A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive operator 'spawn': \& or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling environment is paused, pendent on the return of the called function. With an asynchronous call, both calling environment and called function proceed to execute concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread has a unique thread number, with which, for example, its presence can be monitored or its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace availability. This implies a hierarchy in which a thread is said to be a child thread of its parent thread. The base thread at the root of this hierarchy has thread number 0 .

With multithreading, APL's stack or state indicator can be viewed as a branching tree in which the path from the base to each leaf is a thread.

When a parent thread terminates, any of its children which are still running, become the children of (are 'adopted' by) the parent's parent.

Thread numbers are allocated sequentially from 0 to 2147483647 . At this point, the sequence 'wraps around' and numbers are allocated from 0 again avoiding any still in use. The sequence is reinitialised when a) RESET command is issued, or the active workspace is cleared, or a new workspace is loaded. A workspace may not be saved with threads other than the base thread: 0 , running.

Multi-Threading language elements.

The following language elements are provided to support threads.

- Primitive operator, spawn: \&
- System functions: ZTID, ZTCNUMS, DTNUMS, DTKILL, DTSYNC.
- An extension to the GUI Event syntax to allow asynchronous callbacks.
- A control structure: : Hold.
- System commands:) HOLDS,)TID.
- Extended)SI and) SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of the object concerned. A callback function is executed by $\square D Q$ when the event occurs, or by DNQ.

If you append the character \& to the name of the callback function in the Event specification, the callback function will be executed asynchronously as a thread when the event occurs. If not, it is executed synchronously as before.

For example, the event specification:
ZWS'Event' 'Select' 'DoIt\&'
tells पDQ to execute the callback function DoIt asynchronously as a thread when a Select event occurs on the object.

Thread Switching

Programming with threads requires care.

The interpreter may switch between running threads at the following points:

- Between any two lines of a defined (or dynamic) function or operator.
- While waiting for a DDL to complete.
- While waiting for a DFHOLD to complete.
- While awaiting input from:
- UDQ
- ZSR
- DED
- The session prompt or \square : or \square.
- While awaiting the completion of an external operation:
- A call on an external (AP) function.
- A call on a DNA (DLL) function
- A call on an OLE function.
- A call on a .Net function.

At any of these points, the interpreter might execute code in other threads. If such threads change the global environment; for example by changing the value of, or expunging a name; then the changes will appear to have happened while the thread in question passes through the switch point. It is the task of the application programmer to organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the : Hold control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution of a high-priority callback. This is a callback function that is invoked by a high-priority event which demands that the interpreter must return a result to Windows before it may process any other event. Such high-priority events include Configure, ExitWindows, DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not permitted to use a : Hold control structure in a high-priority callback function.

Name Scope

APL's name scope rules apply whether a function call is synchronous or asynchronous. For example when a defined function is called, names in the calling environment are visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local environment, but can communicate with its parent and 'sibling' functions via local names in the parent.

This point is important. It means that siblings can run in parallel without danger of local name clashes. For example, a GUI application can accommodate multiple concurrent instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute, both child and parent functions may modify values in the calling environment. Both functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those children will thenceforward 'see' local names in the environment that called the parent function. In cases where a child function relies on its parent's environment (the setting of a local value of DIO for example), this would be undesirable, and the parent function would normally execute a $\square T S Y N C$ in order to wait for its children to complete before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls a new function (either synchronously or asynchronously); names in the new function are beyond the purview of the original child. In other words, a function can only ever see its calling stack decrease in size - never increase. This is in order that the parent may call new defined functions without affecting the environment of its asynchronous children.

Using Threads

Put most simply, multithreading allows you to appear to run more than one APL function at the same time, just as Windows (or UNIX) appears to run more than one application at the same time. In both cases this is something of an illusion, although it does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares processing between threads. Although the mechanics are somewhat different, APL multithreading is rather similar to the multitasking provided by Windows. If you are running more than one application, Windows switches from one to another, allocating each one a certain time slice before switching. At any point in time, only one application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually running; the others are paused. Each APL thread has its own State Indicator, or SI stack. When APL switches from one thread to another, it saves the current stack (with all its local variables and function calls), restores the new one, and then continues processing.

Stack Considerations

When you start a thread, it begins with the SI stack of the calling function and sees all of the local variables defined in all the functions down the stack. However, unless the calling function specifically waits for the new thread to terminate (see "Wait for Threads to Terminate: " on page 623), the calling functions will (bit by bit, in their turn) continue to execute. The new thread's view of its calling environment may then change. Consider the following example:

Suppose that you had the following functions: RUN [3] calls INIT which in turn calls GETDATA but as 3 separate threads with 3 different arguments:

```
\nabla RUN;A;B
[1] A&1
[2] B<'Hello World'
[3] INIT
[4] CALC
[5] REPORT
\nabla
```

```
    \nabla INIT;C;D
[1] C\leftarrowD\leftarrow0
[2] GETDATA&'Sales'
[3] GETDATA&'Costs'
[4] GETDATA&'Expenses'
\nabla
```

When each GETDATA thread starts, it immediately sees (via $\square S I$) that it was called by INIT which was in turn called by RUN, and it sees local variables A, B, C and D. However, once INIT [4] has been executed, INIT terminates, and execution of the root thread continues by calling CALC. From then on, each GETDATA thread no longer sees INIT (it thinks that it was called directly from RUN) nor can it see the local variables C and D that INIT had defined. However, it does continue to see the locals A and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would still see the values defined by RUN and not those defined by CALC. However, if CALC were to modify A and B (as globals) without localising them, the GETDATA threads would see the modified values of these variables, whatever they happened to be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semiglobal object (including GUI objects) is inherently dangerous (i.e. a source of programming error) if more than one thread is running. Worse still, programming errors of this sort may not become apparent during testing because they are dependent upon random timing differences. Consider the following example:

```
\nabla BUG;SEMI_GLOBAL
    SEMI_GLOB}AL<
    FOO& }
    GOO& 1
    \nabla
    \nabla FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SŌMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5]
    \nabla
    \nablaGOO
[1] SEMI_GLOBAL\leftarrow1
    \nabla
```

In this example, it is formally impossible to predict in which order APL will execute statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual sequence of execution may be:

$$
\begin{aligned}
\text { BUG[1] }
\end{aligned} \rightarrow \begin{aligned}
& \text { BUG[2] } \rightarrow \text { FOO[1] } \\
& \text { DO_SOMETHING[1] }
\end{aligned} \rightarrow \text { FOO[2] } \rightarrow
$$

or

$$
\begin{aligned}
\text { BUG[1] } \rightarrow & \text { BUG[2] } \rightarrow \text { BUG[3] } \rightarrow \text { GOO[1] } \rightarrow \\
& \text { FOO[1] } \rightarrow \text { FOO[2] } \rightarrow \text { FOO[3] } \\
& \text { FOO[} 4] \rightarrow \text { DO_SOMETHING_ELSE[1] }
\end{aligned}
$$

This is because APL may switch from one thread to another between any two lines in a defined function. In practice, because APL gives each thread a significant timeslice, it is likely to execute many lines, maybe even hundreds of lines, in one thread before switching to another. However, you must not rely on this; thread-switching may occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO thread after FOO [1]. If this happens, the value of SEMI_GLOBAL passed to DO_ SOMETHING will be 1 and not 0 . Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the value of SEMI_GLOBAL remains the same from $\operatorname{FOO}[1$] to $F O O[2$], you may use diamonds instead of separate statements, e.g.
:If SEMI_GLOBAL=0 ๑ DO_SOMETHING SEMI_GLOBAL

Even better, although less efficient, you may use : Hold to synchronise access to the variable, for example:

```
        \nabla FOO
[1]
    :Hold 'SEMI GLOBAL'
        :If SEM\overline{I}_GLOBAL=0
            DO_SOMETHING SEMI_GLOBAL
            :Else
                    DO_SOMETHING_ELSE SEMI_GLOBAL
            :EndIf
    :EndHold
    \nabla
\nabla GOO
    :Hold 'SEMI_GLOBAL'
        SEMI_GLOBAL+1
    :EndHold
    \nabla
```

Now, although you still cannot be sure which of FOO and $G O O$ will run first, you can be sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to : Hold is completely arbitrary, so long as threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages, and not just with Dyalog APL. If you want to take advantage of the additional power provided by multithreading, it is advisable to think carefully about the potential interaction between different threads.

Threads \& Niladic Functions

- In common with other operators, the spawn operator \& may accept monadic or dyadic functions as operands, but not niladic functions. This means that, using spawn, you cannot start a thread that consists only of a niladic function
- If you wish to invoke a niladic function asynchronously, you have the following choices:
- Turn your niladic function into a monadic function by giving it a dummy argument which it ignores.
- Call your niladic function with a dynamic function to which you give an argument that is implicitly ignored. For example, if the function NIL is niladic, you can call it asynchronously using the expression: \{NIL\}\& 0
- Call your function via a dummy monadic function, e.g.

```
[1] NTL-M DUMMY
[1] NIL
    \nabla
    NIL_M& ''
```

- Use execute, e.g.

```
&& 'NIL'
```

Note that niladic functions can be invoked asynchronously as callback functions. For example, the statement:

```
\squareWS'Event' 'Select' 'NIL&'
```

will execute correctly as a thread, even though NIL is niladic. This is because callback functions are invoked directly by ZDQ rather than as an operand to the spawn operator.

Threads \& External Functions

External functions in dynamic link libraries (DLLs) defined using the DNA interface may be run in separate C threads. Such threads:

- take advantage of multiple processors if the operating system permits.
- allow APL to continue processing in parallel during the execution of a ZNA function.

When you define an external function using DNA, you may specify that the function be run in a separate C thread by appending an ampersand (\&) to the function name, for example:

```
'beep'DNA'user32|MessageBeep& i'
A MessageBeep will run in a separate C thread
```

When APL first comes to execute a multi-threaded DNA function, it starts a new Cthread, executes the function within it, and waits for the result. Other APL threads may then run in parallel.

Note that when the DNA call finishes and returns its result, its new C-thread is retained to be re-used by any subsequent multithreaded DNA calls made within the same APL thread. Thus any APL thread that makes any multi-threaded DNA calls maintains a separate C-thread for their execution. This C-thread is discarded when its APL thread finishes.

Note that there is no point in specifying a $\square N A$ call to be multi-threaded, unless you wish to execute other APL threads at the same time.

In addition, if your DNA call needs to access an APL GUI object (strictly, a window or other handle) it should normally run within the same C-thread as APL itself, and not in a separate C-thread. This is because Windows associates objects with the Cthread that created them. Although you can use a multi-threaded DNA call to access (say) a Dyalog APL Form via its window handle, the effects may be different than if the DNA call was not multi-threaded. In general, DNA calls that access APL (GUI) objects should not be multi-threaded.

If you wish to run the same DNA call in separate APL threads at the same time, you must ensure that the DLL is thread-safe. Functions in DLLs which are not threadsafe, must be prevented from running concurrently by using the : Hold control structure. Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one singlethreaded and one multi-threaded, associated with the same function in the DLL. This allows you to call it in either way.

Synchronising Threads

Threads may be synchronised using tokens and a token pool.
An application can synchronise its threads by having one thread add tokens into the pool whilst other threads wait for tokens to become available and retrieve them from the pool.

Tokens possess two separate attributes, a type and a value.
The type of a token is a positive or negative integer scalar. The value of a token is any arbitrary array that you might wish to associate with it.

The token pool may contain up to $2 * 31$ tokens; they do not have to be unique neither in terms of their types nor of their values.

The following system functions are used to manage the token pool:

$\square T P U T$	Puts tokens into the pool.
DTGET	If necessary waits for, and then retrieves some tokens from the pool.
DTPOOL	Reports the types of tokens in the pool
DTREQ	Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want one thread to reach a certain point in processing before a second thread can continue. Perhaps the first thread performs a calculation, and the second thread must wait until the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the pool using DTPUT. The second thread waits (if necessary) for the new value to be available by calling DTGET with the same token type.

Notice that when DTGE T returns, the specified tokens are removed from the pool. However, negative token types will satisfy an infinite number of requests for their positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For example, a semaphore to control a number of resources can be implemented by keeping that number of tokens in the pool. Each thread will take a token while processing, and return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads until the coast is clear. At a signal from another thread, the latch is opened so that all of the threads are released. The latch may (or may not) then be closed again to hold up subsequently arriving threads. A practical example of a latch is a ferry terminal.

Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that number of tokens in the pool. Each thread will take a token while processing, and return it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open at any one time.
sock $\leftarrow 99$
DTPUT 5/sock pool.
∇ sock_open ...
[1] :If sock=ПTGET sock
[.]
[.] DTPUT sock
[.] :Else
[.] error'sockets off'
[.] ${ }_{\nabla}$:EndIf
0 DTPUT Dtreq Dtnums

```
    any +ive number will do).
A do stuff.
A release socket token
a sockets switched off by
    retract (see below).
@ retract socket "service"
    with O value.
```

ค socket-token
ค add 5 socket-tokens to

```
A grap a socket token
```

```
A grap a socket token
```


Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from another thread, the latch is opened so that all of the threads are released. The latch may (or may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the queue until the ferry arrives. The barrier is then opened and all (up to a maximum number) of the cars are allowed through it and on to the ferry. When the last car is through, the barrier is re-closed.
tkt 6 ค 6-token: ferry ticket.

```
    \nabla car ...
[1] DTGET tkt \rho await ferry.
[2] ...
    \nabla ferry ...
[1] arrives in port
[2] पTPUT(\uparrow,/Dtreq Dtnums)ntkt \rho ferry tickets for
all.
[3] ...
```

Note that it is easy to modify this example to provide a maximum number of ferry places per trip by inserting max_places \uparrow between ZTPUT and its argument. If fewer cars than the ferry capacity are waiting, the \uparrow will fill with trailing 0 s. This will not cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for traffic, the barrier could be opened permanently by putting a negative ticket in the pool.

```
DTPUT -tkt & open ferry barrier permananently.
```

Cars could choose to take the last ferry if there are places:

```
    \nabla car ...
[1] :Select DTGET tkt
[2] :Case tkt \diamond take the last ferry.
[3] :Case -tkt \diamond ferry full: take the new bridge.
[4] :End
```

The above : Select works because by default, DTPUT - tk t puts a value of -tkt into the token.

Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way. If the Pause on Error option (see User Guide) is set, all other threads are paused. If Pause on Error option (see User Guide) is not set, other threads will continue running and it is possible for another thread to encounter an error and suspend.

Using the facilities provided by the Tracer and the Threads Tool (see User Guide) it is possible to interrupt (suspend) and restart individual threads, and to pause and resume individual threads, so any thread may be in one of three states - running, suspended or paused.

The Tracer and the Session may be connected with any suspended thread and you can switch the attention of the Session and the Tracer between suspended threads using) TID or by clicking on the appropriate tab in the Tracer. At this point, you may:

- Examine and modify local variables for the currently suspended thread.
- Trace and edit functions in the current thread.
- Cut back the stack in the currently suspended thread.
- Restart execution.
- Start new threads

The error message from a thread other than the base is prefixed with its thread number:

```
260:DOMAIN ERROR
Div[2] rslt+num\divdiv
```

State indicator displays:) SI and) SINL have been extended to show threads' treelike calling structure.

```
    )SI
    #.Calc[1]
&5
    . #.DivSub[1]
    &7
    #.DivSub[1]
    86
    #.Div[2]*
&4
#.Sub[3]
#.Main[4]
```

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div and Calc. Function Div, after spawning DivSub in each of threads 6 and 7, have been suspended at line [2].

Removing stack frames using Quit from the Tracer or \rightarrow from the session affects only the current thread. When the final stack frame in a thread (other than the base thread) is removed, the thread is expunged.
) RESET removes all but the base thread.
Note the distinction between a suspended thread and a paused thread.
A suspended thread is stopped at the beginning of a line in a defined function or operator. It may be connected to the Session so that expressions executed in the Session do so in the context of that thread. It may be restarted by executing \rightarrow l ine (typically, $\rightarrow \square L C$).

A paused thread is an inactive thread that is currently being ignored by the thread scheduler. A paused thread may be paused within a call to $\quad D Q$, a call on an external function, at the beginning of a line, or indeed at any of the thread-switching points described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A paused thread resumes only in the sense that it ceases to be ignored by the thread scheduler and will therefore be switched back to at some point in the future. It does not actually continue executing until the switch occurs.

External Variables

An external variable is a variable whose contents (value) reside not in the workspace, but in a file. An external variable is associated with a file by the system function DXT. If at the time of association the file exists, the external variable assumes its value from the contents of the file. If the file does not exist, the external variable is defined but a VALUE ERROR occurs if it is referenced before assignment. Assignment of an array to the external variable or to an indexed element of the external variable has the effect of updating the file. The value of the external variable or the value of indexed elements of the external variable is made available in the workspace when the external variable occurs in an expression. No special restrictions are placed on the usage of external variables.

Normally, the files associated with external variables remain permanent in that they survive the APL session or the erasing of the external variable from the workspace. External variables may be accessed concurrently by several users, or by different nodes on a network, provided that the appropriate file access controls are established. Multi-user access to an external variable may be controlled with the system function DF HOLD between co-operating tasks.

Refer to the sections describing the system functions DXT and DF HOLD in Chapter 6 for further details.

Examples

'ARRAY' DXT 'V'
$V \leftarrow 210$
$\mathrm{V}[2]+5$
7

Dex'v'
'ARRAY' DXT 'F'
F
12345678910

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of APL arrays known as components which are accessed by reference to their relative positions or component number within the file. A set of system functions is provided to perform a range of file operations. (See "Component Files" on page 376.) These provide facilities to create or delete files, and to read and write components. Facilities are also provided for multi-user access including the capability to determine who may do what, and file locking for concurrent updates. (See User Guide.)

Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users with additional facilities. They run as separate tasks, and communicate with the Dyalog APL interpreter through pipes (UNIX) or via an area of memory (Windows). Typically, APs are used where speed of execution is critical, such as in screen management software, or for utility libraries. Auxiliary Processors may be written in any compiled language, although ' C ' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external functions are fixed in the active workspace. Each external function behaves as if it was a locked defined function, but is in effect an entry point into the Auxiliary Processor. An external function occupies only a negligible amount of workspace. (See User Guide.)

Migration Level

CML determines the degree of migration of the Dyalog APL language towards IBM's APL2. Unless otherwise stated, the manual assumes \square ML has a value of 0 .

Key to Notation

The following definitions and conventions apply throughout this manual:

f	A function, or an operator's left argument when a function.
g	A function, or an operator's right argument when a function.
A	An operator's left argument when an array.
B	An operator's right argument when an array.
X	The left argument of a function.
Y	The right argument of a function.
R	The explicit result of a function.
$[K]$	Axis specification.
$[I]$	Index specification.
$\{X\}$	The left argument of a function is optional.
$\{R\}$	The function may or may not return a result, or the result may be suppressed.

function may refer to a primitive function, a system function, a defined (canonical, dynamic or assigned) function or a derived (from an operator) function.

Chapter 2:

Defined Functions \& Operators

A defined function is a program that takes 0,1 , or 2 arrays as arguments and may produce an array as a result. A defined operator is a program that takes 1 or 2 functions or arrays (known as operands) and produces a derived function as a result. To simplify the text, the term operation is used within this chapter to mean function or operator.

Canonical Representation

Operations may be defined with the system function पFX (Fix) or by using the editor within definition mode. Applying ICR to the character array representing the name of an already established operation will produce its canonical representation. A defined operation is composed of lines. The first line (line 0) is called the operation HEADER. Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,
2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol ρ.

Only the model is required. If local names and comments are included, they must appear in the prescribed order.

Model Syntax

The model for the defined operation identifies the name of the operation, its valence, and whether or not an explicit result may be returned. Valence is the number of explicit arguments or operands, either 0,1 or 2 ; whence the operation is termed NILADIC, MONADIC or DYADIC respectively. Only a defined function may be niladic. There is no relationship between the valence of a defined operator, and the valence of the derived function which it produces. Defined functions and derived functions produced by defined operators may be ambivalent, i.e. may be executed monadically with one argument, or dyadically with two. An ambivalent operation is identified in its model by enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in execution if not explicitly used or assigned by enclosing the result in its model within braces. Such a suppressed result is termed SHY.

The tables below show all possible models for defined functions and operators respectively.

Defined Functions

Result	Niladic	Monadic	Dyadic	Ambivalent
None	f	f Y	$X f$ Y	$\{X\}$ f Y
Explicit	$R \leftarrow f$	$R \leftarrow f \quad Y$	$R \leftarrow X f$ Y	$R \leftarrow\{X\}$ f Y
Suppressed	$\{\mathrm{R}\} \leftarrow \mathrm{f}$	$\{R\} \leftarrow f \quad Y$	$\{R\} \leftarrow X f Y$	$\{R\} \leftarrow\{X\}$ f Y

Note:The right argument Y and/or the result R may be represented by a single name, or as a blank-delimited list of names surrounded by parentheses. For further details, see "Namelists" on page 68.

Derived Functions produced by Monadic Operator

Result	Monadic	Dyadic	Ambivalent
None	$(A$ op $) Y$	$X(A$ op $) Y$	$\{X\}(A$ op $) Y$
Explicit	$R \leftarrow(A$ op $) Y$	$R \leftarrow X(A$ op $) Y$	$R \leftarrow\{X\}(A$ op $) Y$
Suppressed	$\{R\} \leftarrow(A$ op $) Y$	$\{R\} \leftarrow X(A$ op $) Y$	$\{R\} \leftarrow\{X\}(A$ op $) Y$

Derived Functions produced by Dyadic Operator

Result	Monadic	Dyadic	Ambivalent
None	$(\mathrm{A}$ op B$) \mathrm{Y}$	$\mathrm{X}(\mathrm{A}$ op B $) \mathrm{Y}$	$\{\mathrm{X}\}(\mathrm{A}$ op B $) \mathrm{Y}$

Explicit	$R \leftarrow(A$ op B) Y	$R \leftarrow X(A$ op B) Y	$R \leftarrow\{X\}(A$ op B) Y
Suppressed	$\{R\} \leftarrow(A$ op $B) Y$	$\{R\} \leftarrow X(A$ op $B) Y$	$\{R\} \leftarrow\{X\}$ (A op $B) Y$

Statements

A statement is a line of characters understood by APL. It may be composed of:

1. a LABEL (which must be followed by a colon :), or a CONTROL STATEMENT (which is preceded by a colon), or both,
2. an EXPRESSION (see "Expressions" on page 17),
3. a SEPARATOR (consisting of the diamond character \diamond which must separate adjacent expressions),
4. a COMMENT (which must start with the character ρ).

Each of the four parts is optional, but if present they must occur in the given order except that successive expressions must be separated by \diamond. Any characters occurring to the right of the first comment symbol (\propto) that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by \diamond are taken in left-to-right order as they occur in the line. For output display purposes, each separated expression is treated as a separate statement.

Examples

$$
5 \times 10
$$

50
MULT: 5×10
50

MULT: $5 \times 10 \diamond 2 \times 4$
50
8
MULT: 5×10 จ 2×4 ค MULTIPLICATION
50
8

Global \& Local Names

The following names, if present, are local to the defined operation:

1. the result,
2. the argument(s) and operand(s),
3. additional names in the header line following the model, each name preceded by a semi-colon character,
4. labels,
5. the argument list of the system function GSHADOW when executed,
6. a name assigned within a Dynamic Function.

All names in a defined operation must be valid APL names. The same name may be repeated in the header line, including the operation name (whence the name is localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic operation. The name of a label may be the same as a name in the header line. More than one label may have the same name. When the operation is executed, local names in the header line after the model are initially undefined; labels are assigned the values of line numbers on which they occur, taken in order from the last line to the first; the result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array to the left of the function when called; and the right argument (if any) takes the value of the array to the right of the function when called. In the case of a defined operator, the left operand takes the value of the function or array to the left of the operator when called; and the right operand (if any) takes the value of the function or array to the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the same name with an active definition. This is known as LOCALISATION or SHADOWING. A value or meaning given to a local name will persist only for the duration of execution of the defined operation (including any time whilst the operation is halted). A name which is not local to the operation is said to be GLOBAL. A global name could itself be local to a pendent operation. A global name can be made local to a defined operation during execution by use of the system function ISHADOW. An object is said to be VISIBLE if there is a definition associated with its name in the active environment.

Examples

$$
A \leftarrow 1
$$

```
[1] A
[1]
    A\leftarrow10
```

[2] ∇
F a <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A
10
$A \leftarrow 1$
) ERASE F
∇ F; A
[1] $\quad A+10$
[2] ∇
F ρ <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A
1

Any statement line in the body of a defined operation may begin with a LABEL. A label is followed by a colon $(:)$. A label is a constant whose value is the number of the line in the operation defined by system function $\square F X$ or on closing definition mode.

The value of a label is available on entering an operation when executed, and it may be used but not altered in any expression.

Example

```
    OVR'PLUS'
    \nabla R+{A} PLUS B
[1] ->DYADIC م\ddot{~}2=\squareNC'A' \diamond R&B \diamond ->END
[2] DYADIC: R\leftarrowA+B
[3] END:
    \nabla
        1 ISTOP'PLUS'
        2 ~ P L U S ~ 2 , ~
PLUS[1]
    DYADIC
2
    END
3
```


Namelists

The right argument and the result of a function may be specified in the function header by a single name or by a Namelist. In this context, a Namelist is a blank-delimited list of names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no need to localise them explicitly using semi-colons.

If the right argument of a function is declared as a Namelist, the function will only accept a right argument that is a vector whose length is the same as the number of names in the Namelist. Calling the function with any other argument will result in a LENGTH ERROR in the calling statement. Otherwise, the elements of the argument are assigned to the names in the Namelist in the specified order.

Example:

```
    \nabla IDN*Date2IDN(Year Month Day)
[1] 'Year is ',\PhiYear
[2] 'Month is ',\varnothingMonth
[3] 'Day is ',कDay
[4] ...
    \nabla
        Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30
    Date2IDN 2004 4
LENGTH ERROR
    Date2IDN 2004 4
    ^
```

Note that if you specify a single name in the Namelist, the function may be called only with a 1 -element vector or a scalar right argument.

If the result of a function is declared as a Namelist, the values of the names will automatically be stranded together in the specified order and returned as the result of the function when the function terminates.

Example:

```
[1] Year+1949+age
```

[2] Month*4
[3] Day +30
∇
Birthday 50
1999430

Function Declaration Statements

Function Declaration statements are used to identify the characteristics of a function in some way.

The following declarative statements are provided.

- :Access
- :Attribute
- :Implements
- :Signature

With one exception, these statements are not executable statements and may theoretically appear anywhere in the body of the function. However, it is recommended that you place them at the beginning before any executable statements. The exception is:
:Implements Constructor <[:Base expr]>
In addition to being declarative (declaring the function to be a Constructor) this statement also executes the Constructor in the Base Class whether or not it includes :Base expr. Its position in the code is therefore significant.

Access Statement : Access

```
:Access <Private|Public><Instance|Shared>
:Access <WebMethod>
```

The : Access statement is used to specify characteristics for functions that represent Methods in classes (see "Methods" on page 164). It is also applicable to Classes and Properties.

Element	Description
PrivatelPublic	Specifies whether or not the method is accessible from outside the Class or an Instance of the Class. The default is Private.
Instance\|Shared	Specifies whether the method runs in the Class or Instance. The default is Instance.
WebMethod	Specifies that the method is exported as a web method. This applies only to a Class that implements a Web Service.
Overridable	Applies only to an Instance Method and specifies that the Method may be overridden by a Method in a higher Class. See below.
Override	Applies only to an Instance Method and specifies that the Method overrides the corresponding Overridable Method defined in the Base Class. See below

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name that is defined in its Base Class, but only for calls made from above or within the higher Class itself (or an Instance of the higher Class). The base method remains available in the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in-situ (i.e. within its own Class) by a Method of the same name in a higher Class if that Method is itself declared with the Override keyword. For further information, see "Superseding Base Class Methods" on page 167.

WebMethod

Note that : Access WebMethod is equivalent to:
:Access Public
:Attribute System. Web.Services.WebMethodAttribute

Attribute Statement :Attribute

```
:Attribute <Name> [ConstructorArgs]
```

The : Attribute statement is used to attach .Net Attributes to a Method (or Class).
Attributes are descriptive tags that provide additional information about programming elements. Attributes are not used by Dyalog APL but other applications can refer to the extra information in attributes to determine how these items can be used. Attributes are saved with the metadata of Dyalog APL .NET assemblies.

Element	Description
Name	The name of a .Net attribute
ConstructorArgs	Optional arguments for the Attribute constructor

Examples

:Attribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

Implements Statement : Implements

The : Implements statement identifies the function to be one of the following types.

```
:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>
```

Element	Description
Constructor	Specifies that the function is a Class Constructor.
: Base expr	Specifies that the Base Constructor be called with the result of the expression expr as its argument.
Destructor	Specifies that the function is a Class Destructor.
Method	Specifies that the function implements the Method MethodName whose syntax is specified by Interface InterfaceName.
Trigger	Identifies the function as a Trigger Function which is activated by changes to variable name1, name2, etc.

Signature Statement :Signature

```
:Signature <rslttype<><name><arg1type arg1name>,...
```

This statement identifies the name and signature by which a function is exported as a method to be called from outside Dyalog APL. Several :Signature statements may be specified to allow the method to be called with different arguments and/or to specify a different result type.

Element	Description
rsl ttype	Specifies the data type for the result of the method
name	Specifies the name of the exported method.
argntype	Specifies the data type of the nth parameter
argnname	Specifies the name of the nth parameter

Argument and result data types are identified by the names of .Net Types which are defined in the .Net Assemblies specified by DUSING or by a :USING statement.

Examples

In the following examples, it is assumed that the .Net Search Path (defined by :Using or DUSING includes 'System'.

The following statement specifies that the function is exported as a method named Format which takes a single parameter of type System. Object named Array. The data type of the result of the method is an array (vector) of type System.String.

```
:Signature String[]<Format Object Array
```

The next statement specifies that the function is exported as a method named Catenate whose result is of type System. Object and which takes 3 parameters. The first parameter is of type System. Double and is named Dimension. The second is of type System. Object and is named Arg1. The third is of type System. Object and is named Arg2.

$$
\begin{array}{r}
\text { :Signature Object+Catenate Double Dimension,... } \\
\ldots . . \text { Object Arg1, Object Arg2 }
\end{array}
$$

The next statement specifies that the function is exported as a method named IndexGen whose result is an array of type System. Int32 and which takes 2 parameters. The first parameter is of type System. Int 32 and is named N. The second is of type System. Int 32 and is named Origin.

```
:Signature Int32[]<IndexGen Int32 N, Int32 Origin
```

The next block of statements specifies that the function is exported as a method named Mix. The method has 4 different signatures; i.e. it may be called with 4 different parameter/result combinations.

```
:Signature Int32[,]+Mix Double Dimension, ...
    ...Int32[] Vec1, Int32[] Vec2
:Signature Int32[,]+Mix Double Dimension,...
    ... Int32[] Vec1, Int32[] Vec2, Int32 Vec3
:Signature Double[,]+Mix Double Dimension, ...
    ... Double[] Vec1, Double[] Vec2
:Signature Double[,]+Mix Double Dimension, ...
    ... Double[] Vec1, Double[] Vec2, Double[]
```

Vec3

Control Structures

Control structures provide a means to control the flow of execution in your APL programs.

Traditionally, lines of APL code are executed one by one from top to bottom and the only way to alter the flow of execution is using the branch arrow. So how do you handle logical operations of the form "If this, do that; otherwise do the other"?

In APL this is often not a problem because many logical operations are easily performed using the standard array handling facilities that are absent in other languages. For example, the expression:

$$
\text { STATUS } \leftarrow(1+A G E<16))^{\prime A d u l t ' ~ ' M i n o r ' ~}
$$

sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to 'Minor'.

Things become trickier if, depending upon some condition, you wish to execute one set of code instead of another, especially when the code fragments cannot conveniently be packaged as functions. Nevertheless, careful use of array logic, defined operators, the execute primitive function and the branch arrow can produce high quality maintainable and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations and decisions. Apart from providing greater affinity with more traditional languages, Control structures may enhance comprehension and reduce programming errors, especially when the logic is complex. Control structures are not, however, a replacement for the standard logical array operations that are so much a part of the APL language.

Control Structures are blocks of code in which the execution of APL statements follows certain rules and conditions. Control structures are implemented using a set of control words that all start with the colon symbol (:). Control Words are case-insensitive.

There are eight different types of control structures defined by the control words, :If,:While,: Repeat, :For, :Select,:With,: Trap and :Hold. Each one of these control words may occur only at the beginning of an APL statement and indicates the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These are : Else, :ElseIf,: AndIf,: OrIf,: Until,: Case and :CaseList.

A third set of control words is used to identify the end of a particular control structure. These are : EndIf,: EndWhile, :EndRepeat,: EndFor, :EndSelect,: EndWith,: EndTrap and :EndHold. Although formally distinct, these control words may all be abbreviated to : End.

Finally, the : GoTo, : Return, : Leave and : Cont inue control words may be used to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as : Else and :EIseIf, may occur only at the beginning of a line or expression in a diamond-separated statement. The only exceptions are : In and :InE ach which must appear on the same line within a : For expression.

Key to Notation

The following notation is used to describe Control Structures within this section:

aexp	an expression returning an array,
bexp	an expression returning a single Boolean value (0 or 1),
var	loop variable used by : For control structure,
code	0 or more lines of APL code, including other (nested) control structures,
andor	either one or more : AndIf statements, or one or more : OrIf statements.

Access Statement : Acces s

The : Access statement may be used to define the characteristics of a Class, the characteristics of a defined function (Method) in a Class, or the characteristics of other Class members.
:Access Statement in a Function/Method.
:Access Statement in a Class or in other members of a Class.

Attribute Statement : Attribute

The : Attribute statement is used to attach .Net Attributes to a Method or a Class.
:Attribute Statement for a Class.
:Attribute statement for a Method.

If Statement :If bexp

The simplest : If control structure is a single condition of the form:

```
[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :EndIf
```

If the test condition (in this case $A G E<21$) is true, the statements between the : If and the : EndIf will be executed. If the condition is false, none of these statements will be run and execution resumes after the : EndIf. Note that the test condition to the right of : If must return a single element Boolean value 1 (true) or 0 (false).
: If control structures may be considerably more complex. For example, the following code will execute the statements on lines [2-3] if AGE < 21 is 1 (true), or alternatively, the statement on line [6] if AGE <21 is 0 (false).

[1]	: If AGE<21
[2]	expr 1
[3]	expr 2
[5]	: Else
[6]	expr 3
[7]	: EndIf

Instead of a single condition, it is possible to have multiple conditions using the : ElseIf control word. For example:

```
[1] :If WINEAGE<5
[2] 'Too young to drink'
[5] :ElseIf WINEAGE<10
[6] 'Just Right'
[7] :ElseIf WINEAGE<15
[8] 'A bit past its prime'
[9] :Else
[10] 'Definitely over the hill'
[11] :EndIf
```

Notice that APL executes the expression(s) associated with the first condition that is true or those following the : El se if none of the conditions are true.

The : AndIf and :OrIf control words may be used to define a block of conditions and so refine the logic still further. You may qualify an :If or an :ElseIf with one or more : AndIf statements or with one or more : OrIf statements. You may not however mix : AndIf and :OrIf in the same conditional block. For example:

```
[1] :If WINE.NAME\equiv'Chateau Lafitte'
[2] :AndIf WINE.YEAR\in1962 1967 1970
[3] 'The greatest?'
[4] :ElseIf WINE.NAME\equiv'Chateau Latour'
[5] :Orif WINE.NAME\equiv'Chateau Margaux'
[6] :Orif WINE.PRICE>100
[7] 'Almost as good'
[8] :Else
[9] 'Everyday stuff'
[10] :EndIf
```

Please note that in a: If control structure, the conditions associated with each of the condition blocks are executed in order until an entire condition block evaluates to true. At that point, the APL statements following this condition block are executed. None of the conditions associated with any other condition block are executed. Furthermore, if an : And If condition yields 0 (false), it means that the entire block must evaluate to false so the system moves immediately on to the next block without executing the other conditions following the failing : And If. Likewise, if an : Or If condition yields 1 (true), the entire block is at that point deemed to yield true and none of the following : Or If conditions in the same block are executed.

:If Statement

While Statement :While bexp

The simplest : While loop is:

```
[1] \(\quad \mathrm{I} \leftarrow 0\)
[2] :While I<100
[3] expr1
[4] expr2
[5] \(\quad \mathrm{I} \leftarrow \mathrm{I}+1\)
[6] :EndWhile
```

Unless expr 1 or expr 2 alter the value of I, the above code will execute lines [34] 100 times. This loop has a single condition; the value of I. The purpose of the : EndWhile statement is solely to mark the end of the iteration. It acts the same as if it were a branch statement, branching back to the :While line.

An alternative way to terminate $\mathrm{a}: \mathrm{While}$ structure is to use $\mathrm{a}:$ Until statement. This allows you to add a second condition. The following example reads a native file sequentially as 80 -byte records until it finds one starting with the string 'Widget ' or reaches the end of the file.

```
[1] I % O
[2] :While I<DNSIZE -1
[3] REC+\squareNREAD -1 }828
[4] I<I+\rhoREC
[5] :Until 'Widget'\equiv6\rhoREC
```

Instead of single conditions, the tests at the beginning and end of the loop may be defined by more complex ones using : AndIf and :OrIf. For example:

```
[1] :While 100>i
[2] :AndIf 100>j
[3] i j&foo i j
[4] :Until 100<i+j
[5] :OrIf i<0
[6] :OrIf j<0
```

In this example, there are complex conditions at both the start and the end of the iteration. Each time around the loop, the system tests that both \mathbf{i} and \mathbf{j} are less than or equal to 100 . If either test fails, the iteration stops. Then, after i and j have been recalculated by $f \circ 0$, the iteration stops if $i+j$ is equal to or greater than 100 , or if either \mathbf{i} or j is negative.
:While Statement

Repeat Statement : Repeat

The simplest type of : Repeat loop is as follows. This example executes lines [35] 100 times. Notice that as there is no conditional test at the beginning of a : Repeat structure, its code statements are executed at least once.

$[1]$	$I \leftarrow 0$
$[2]$:Repeat
$[3]$	expr1
$[4]$	expr2
$[5]$	$I \leftarrow I+1$
$[6]$:Until $I=100$

You can have multiple conditional tests at the end of the loop by adding : AndIf or : OrIf expressions. The following example will read data from a native file as $80-$ character records until it reaches one beginning with the text string 'Widget' or reaches the end of the file.

```
[1] :Repeat
[2] REC-DNREAD -1 }828
[3] :Until 'Widget'\equiv6pREC
[4] :OrIf 0=oREC
```

A : Repeat structure may be terminated by an : EndRepeat (or: End) statement in place of a conditional expression. If so, your code must explicitly jump out of the loop using a :Leave statement or by branching. For example:

[1]	:Repeat
[2]	REC $-\square N R E A D-18280$
[3]	: If $0=\rho R E C$
[4]	:OrIf 'Widget' $\equiv 6 \mathrm{pREC}$
[5]	:Leave
[6]	: EndIf
[7]	: EndRepeat

:Repeat Statement

For Statement
 : For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a particular control variable. For example, the following would execute lines [2-3] successively for values of I from 3 to 5 inclusive:

```
[1] :For I :In 3 4 5
[2] expr1 I
[3] expr2 I
[4] :EndFor
```

The way a : For loop operates is as follows. On encountering the : For, the expression to the right of $:$ In is evaluated and the result stored. This is the control array. The control variable, named to the right of the : For, is then assigned the first value in the control array, and the code between : For and : EndFor is executed. On encountering the : EndF or, the control variable is assigned the next value of the control array and execution of the code is performed again, starting at the first line after the : For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the : For structure is not executed. Note too that the control array may be any rank and shape, but that its elements are assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code resizes (and compacts) all your component files

```
[1] :For FILE :In (l\FLIB '')~"' '
[2] FILE DFTIE 1
[3] DFRESIZE 1
[4] DFUNTIE 1
[5] :EndFor
```

You may also nest : For loops. For example, the following expression finds the timestamp of the most recently updated component in all your component files.

```
[1] TS}\leftarrow
[2] :For FILE :In (lDFLIB '')~"' '
    FILE DFTIE 1
    START END<2\rhoDFSIZE 1
        :For COMP :In (START-1)\downarrow\imathEND-1
            TS「<-1^DFREAD FILE COMP
        :EndFor
        DfuNTIE 1
[9] :EndFor
```


Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of doing a strand assignment each time around the loop.

For example :For a b c :in (1 2 3) (4 5 6), sets a b c+1 2 3, first time around the loop and abct $\mathrm{c} \leftarrow 6$, the second time.
 and column index of Matrix.

:InEach Control Word

```
:For var ... :InEach value ...
```

In a : For control structure, the keyword :InEach is an alternative to $:$ In.
For a single control variable, the effect of the keywords is identical but for multiple control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

```
:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
    \square*a b c
:EndFor
:For a b c :InEach (1 3 5 7)(2 4 6 8)(3 5 7 9)
    \square<a b c
: EndFor
```

In each case, the output from the loop is:
123
345
567
789
Notice that in the second case, the number of items in the values vector is the same as the number of control variables. A more typical example might be.

```
:For a b c :InEach avec bvec cvec
    ...
:EndFor
```

Here, each time around the loop, control variable a is set to the next item of avec, b to the next item of bvec and c to the next item of cvec .
:For Statement

```
|
:For var :In[Each] aexp
|
code
|
:End[For]
|
```


Select Statement

: Select aexp

A: Select structure is used to execute alternative blocks of code depending upon the value of an array. For example, the following displays ' I is 1 ' if the variable I has the value 1 , ' I is 2 ' if it is 2 , or 'I is neither 1 nor 2 ' if it has some other value.

```
[1] :Select I
[2] :Case 1
[3] 'I is 1'
[4] :Case 2
[5] 'I is 2'
[6] :Else
[7] 'I is neither 1 nor 2'
[8] :EndSelect
```

In this case, the system compares the value of the array expression to the right of the : Select statement with each of the expressions to the right of the : Case statements and executes the block of code following the one that matches. If none match, it executes the code following the : El se (which is optional). Note that comparisons are performed using the \equiv primitive function, so the arrays must match exactly. Note also that not all of the : Case expressions are necessarily evaluated because the process stops as soon as a matching expression is found.

Instead of a : Case statement, you may also use a : CaseList statement. If so, the enclose of the array expression to the right of : Select is tested for membership of the array expression to the right of the :CaseList using the ϵ primitive function.

Example

```
[1] :Select ?6 6
[2] :Case 66
[3] 'Box Cars'
[4] :Case 11
[5] 'Snake Eyes'
[6] :CaseList 20"ュ6
[7] 'Pair'
[8] :CaseList (26), " \({ }^{\prime}\) ı6
[9] 'Seven'
[10] :Else
[11] 'Unlucky'
[12] :EndSelect
```

:Select Statement

With Statement
 :With obj

:Wi th is a control structure that may be used to simplify a series of references to an object or namespace. : Wi th changes into the specified namespace for the duration of the control structure, and is terminated by : End [With]. For example, you could update several properties of a Grid object F.G as follows:

```
:With F.G
    Values*4 3\rho0
    RowTitles*'North' 'South' 'East' 'West'
    ColTitles*'Cakes' 'Buns' 'Biscuits'
:EndWith
```

:With is analogous to CCS in the following senses:

- The namespace argument to :With is interpreted relative to the current space.
- With the exception of those with name class 9 , local names in the containing defined function continue to be visible in the new space.
- Global references from within the :With control structure are to names in the new space.
- Exiting the defined function from within a : With control structure causes the space to revert to the one from which the function was called.

On leaving the : With control structure, execution reverts to the original namespace. Notice however that the interpreter does not detect branches (\rightarrow) out of the control structure. :With control structures can be nested in the normal fashion:

:With Statement

```
    |
    :With namespace (ref or name)
    |
    code
    |
    :End[With]
    |
```


Hold Statement : Hold tkn

Whenever more than one thread tries to access the same piece of data or shared resource at the same time, you need some type of synchronisation to control access to that data. This is provided by : Hold.
: Hol d provides a mechanism to control thread entry into a critical section of code. $t \mathrm{kns}$ must be a simple character vector or scalar, or a vector of character vectors. t kns represents a set of 'tokens', all of which must be acquired before the thread can continue into the control structure. : Hold is analogous to the component file system DFHOLD.

Within the whole active workspace, a token with a particular value may be held only once. If the hold succeeds, the current thread acquires the tokens and execution continues with the first phrase in the control structure. On exit from the structure, the tokens are released for use by other threads. If the hold fails, because one or more of the tokens is already in use:

1. If there is no : Else clause in the control structure, execution of the thread is blocked until the requested tokens become available.
2. Otherwise, acquisition of the tokens is abandoned and execution resumed immediately at the first phrase in the $: \mathrm{El}$ se clause.
tkns can be either a single token:
```
'a'
'Red'
'#.Util'
''
'Program Files'
```

... or a number of tokens:
'red' 'green' 'blue'
'doe' 'a' 'deer'
, "'abc'

Pre-processing removes trailing blanks from each token before comparison, so that, for example, the following two statements are equivalent:

```
:Hold 'Red' 'Green'
:Hold \downarrow2 5p'Red Green'
```

Unlike DF HOLD, a thread does not release all existing tokens before attempting to acquire new ones. This enables the nesting of holds, which can be useful when multiple threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace, and then updates a structure in its parent space. The holds will allow all 'sibling' namespaces to update concurrently, but will constrain updates to the parent structure to be executed one at a time.

```
:Hold Dcs'' \rho Hold child space
A Update child space
    :Hold ##.\squarecs'' ค Hold parent space
    ...
    :EndHold
    A Update Parent space
```

 ...
 : EndHold

However, with the nesting of holds comes the possibility of a 'deadlock'. For example, consider the two threads:

Thread 1	Thread 2
:Hold 'red'	:Hold 'green'
:Hold 'green'	:Hold 'red'
:EndHöd	$:$ EndHöid
:EndHold	:EndHold

In this case if both threads succeed in acquiring their first hold, they will both block waiting for the other to release its token.

If this deadlock situation is detected acquisition of the tokens is abandoned. Then:

1. If there is an :Else clause in the control structure, execution jumps to the : Else clause.
2. Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens in the same chronological order, and that threads never attempt to acquire tokens that they already own.

Note that token acquisition for any particular : Hold is atomic, that is, either all of the tokens or none of them are acquired. The following example cannot deadlock:

Thread 1	Thread 2
:Hold 'red'	:Hold 'green' 'red'
:Hold 'green'	:.EndHold
:EndHoid	
:EndHold	

Examples

: Hold could be used for example, during the update of a complex data structure that might take several lines of code. In this case, an appropriate value for the token would be the name of the data structure variable itself, although this is just a programming convention: the interpreter does not associate the token value with the data variable.

```
:Hold'Struct'
    ... \(\quad\) Q Update Struct
    Struct \(\leftarrow \ldots\)
: EndHold
```

The next example guarantees exclusive use of the current namespace:

```
:Hold DCS''
\rho Hold current space
    ...
:EndHold
```

The following example shows code that holds two positions in a vector while the contents are exchanged.

```
:Hold \(\Phi\) "to fm
    :If >/vec[fm to]
            \(\mathrm{vec}[\mathrm{fm}\) to]+vec[to fm]
    : End
: End
```

Between obtaining the next available file tie number and using it:

```
:Hold 'DFNUMS'
    tie<1+[/0,DFNUMS
    fname DFSTIE tie
:End
```

The above hold is not necessary if the code is combined into a single line:

```
fname DFSTIE tie\leftarrow1+\lceil/0,DFNUMS
```

or,
tie \leftarrow fname DFSTIE 0

Note that : Hold, like its component file system counterpart DF HOLD, is a device to enable co-operating threads to synchronise their operation.
: Hold does not prevent threads from updating the same data structures concurrently, it prevents threads only from: Hold-ing the same tokens.
:Hold Statement

```
|
:Hold token(s)
|
code
|
|--------
:Else
    |
    code
| |
|
|<------.
:End[Hold]
|
```


Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an alternative to, the DTRAP system variable. It is equivalent to APL2's $\square E A$, except that the code to be executed is not restricted to a single expression and is not contained within quotes (and so is slightly more efficient).

Operation

The segment of code immediately following the : Trap keyword is executed. On completion of this segment, if no error occurs, control passes to the code following : End[Trap].

If an error does occur, the event code (error number) is noted and:

- If the error occurred within a sub-function, the system cuts the execution stack back to the function containing the : Trap keyword. In this respect, : Trap behaves like DTRAP with a ' C ' qualifier.
- The system searches for a : Case[List] representing the event code.
- If there is such a : Case[List], or failing that, an : Else keyword, execution continues from this point.

Otherwise, control passes to the code following : End[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code segment. It is disabled (or surrendered to outer level : Traps or DTRAPs) immediately a trapped error occurs. In particular, the error trap is no longer in effect during processing of : Case[List]'s argument or in the code following the : Case[List] or : Else statement. This avoids the situation sometimes encountered with DTRAP where an infinite 'trap loop' occurs. If an error which is not specified occurs, it is processed by outer : Traps, ZTRAPs, or default system processing in the normal fashion.

Note that the statement : trap θ results in no errors being trapped.

Examples

```
    | lx
        :Trap 1000 & Cutback and exit on interrupt
            Main ...
    :EndTrap
    \nabla
    \nabla ftie\leftarrowFcreate file & Create null component file
        ftie\leftarrow1+\Gamma/0,\squarefnums a next tie number.
[2] :Trap 22 a Trap FILE NAME ERROR
[3] file Dfcreate ftie \rho Try to create file.
[4] :Else
[5] file पftie ftie \rho Tie the file.
[6] file Dferase ftie \rho Drop the file.
[7] file Dfcreate ftie ค Create new file.
[8] :EndTrap
    \nabla
    \nabla lx ^ Distinguish various cases
        :Trap O 1000
            Main ...
        :Case 1002
            'Interrupted ...'
        :CaseList 1 10 72 76
            'Not enough resources'
    :CaseList 17+220
            'File System Problem'
        :Else
            'Unexpected Error'
        :EndTrap
    \nabla
```

Note that :Traps can be nested:

∇	ntie \leftarrow Ntie file		Tie native file
[1]	ntie $\leftarrow^{-1+L / 0, \square n n u m s ~}$	ค	Next native tie num
[2]	:Trap 22	ค	Trap FILE NAME
ERROR			
[3]	file पntie ntie	ค	Try to tie file
[4]	: Else		
[5]	:Trap 22	ค	Trap file Name
ERROR			
[6] (file,'.txt')Dntie ntie ค Try with .txt			
[7] : Else			
[8]	file Dncreate ntie	ค	Create null file.
[9] :EndTrap			
[10] : EndTrap			
∇			

:Trap Statement

```
|
:Trap <ecode>
|
code
|<---------------------------------------------
```


Where ecode is a scalar or vector of पTRAP event codes (see" Trappable Event Codes" on page 618).

Note that within the : Trap control structure, : Case is used for a single event code and : CaseList for a vector of event codes.

GoTo Statement

: GoTo aexp

A : GoTo statement is a direct alternative to \rightarrow (branch) and causes execution to jump to the line specified by the first element of aexp.

The following are equivalent. See "Branch:" on page 232 for further details.

```
->Exit
:GoTo Exit
(N<I<I+1)/End
:GoTo (N<I&I+1)/End
->1+\squareLC
:GoTo 1+\squareLC
->10
:GoTo 10
```

A : Return statement causes a function to terminate and has exactly the same effect as $\rightarrow 0$.

The : Return control word takes no argument.
A : Return statement may occur anywhere in a function or operator.

A :Leave statement is used to explicitly terminate the execution of a block of statements within a: For, : Repeat or :While control structure.

The : Leave control word takes no argument.

Continue Statement : Continue

A : Cont i nue statement starts the next iteration of the immediately surrounding : For, : Repeat or :While control loop.

When executed within a : F or loop, the effect is to start the body of the loop with the next value of the iteration variable.

When executed within a : Repeat or : While loop, if there is a trailing test that test is executed and, if the result is true, the loop is terminated. Otherwise the leading test is executed in the normal fashion.

Section Statement

Functions and scripted objects (classes, namespaces etc.) can be subdivided into Sections with : Section and : EndSection statements. Both statements may be followed by an optional and arbitrary name or description. The purpose is to split the function up into sections that you can open and close in the Editor, thereby aiding readability and code management. Sections have no effect on the execution of the code, but must follow the nesting rules of other control structures.

For further information, See User Guide.

Triggers

Triggers provide the ability to have a function called automatically whenever a variable or a Field is assigned. Triggers are actioned by all forms of assignment (\leftarrow), but only by assignment.

Triggers are designed to allow a class to perform some action when a field is modified - without having to turn the field into a property and use the property setter function to achieve this. Avoiding the use of a property allows the full use of the APL language to manipulate data in a field, without having to copy field data in and out of the class through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations where this is very useful. However, dynamically attaching and detaching a trigger from a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the Trigger Function. The name of a variable or Field which has an associated Trigger Function is termed a Trigger.

A function is declared as aTrigger function by including the statement:

```
:Implements Trigger Name1,Name2,Name3, ...
```

where Name 1, Name 2 etc are the Triggers.
When a Trigger function is invoked, it is passed an Instance of the internal Class TriggerArguments. This Class has 3 Fields:

Member	Description
Name	Name of the Trigger whose change in value has caused the Trigger Function to be invoked.
NewValue	The newly assigned value of the Trigger
OldValue	The previous value of the Trigger. If the Trigger was not previously defined, a reference to this Field causes a VALUE ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was assigned; typically by the end of the currently executing line of APL code. The precise timing is not guaranteed and may not be consistent because internal workspace management operations can occur at any time.

If the value of a Trigger is changed more than once by a line of code, the Trigger Function will be called at least once, but the number of times is not guaranteed.

A Trigger Function is not called when the Trigger is expunged.
Expunging a Trigger disconnects the name from the Trigger Function and the Trigger Function will not be invoked when the Trigger is reassigned. The connection may be re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix the Trigger function in the function in which the Trigger is localised; for example:
∇ TRIG arg
[1] :Implements Trigger A
[2] ...
∇ TEST;A
[1] DFX DOR'TRIG'
[2] $A \leftarrow 10$

Example

The following function displays information when the value of variables A or B changes.

```
\nabla TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 a VALUE ERROR
[4] arg.Name'was 'arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]'
[7] :EndTrap
\nabla
```

Note that on the very first assignment to A , when the variable was previously undefined, arg.OldValue is a VALUE ERROR.

$$
A \leftarrow 10
$$

$$
\text { A is now } 10
$$

A was [undefined]

$$
A+\leftarrow 10
$$

$$
\text { A is now } 20
$$

$$
\text { A was } 10
$$

A 'Hello World'
A is now Hello World

$$
\text { A was } 20
$$

$$
A[1] \leftarrow 23 \rho r 6
$$

$$
\text { A is now } \quad 1233 \text { ello World }
$$

$$
456
$$

A was Hello World

$$
B \leftarrow \phi{ }^{\bullet} A
$$

$$
\text { B is now } \begin{array}{llll}
3 & 2 & 1 \\
6 & 5 & 4
\end{array} \text { ello World }
$$

B was [undefined]

$$
\mathrm{A}+\square \mathrm{NEW} \mathrm{MyClass}
$$

A is now \#.[Instance of MyClass]

$$
\text { A was } \quad 123 \text { ello World }
$$

$$
456
$$

'F'DWC'Form'

$$
A \leftarrow F
$$

A is now \#.f
A was \#.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a Form using DWC does not invoke TRIG.

```
    'A'\squareWC'FORM' \rho Note that Trigger Function is not
invoked
```

However, the connection (between A and TRIG) remains and the Trigger Function will be invoked if and when the Trigger is re-assigned.

```
    A+99
A is now 99
A was #.A
```

See "Trigger Fields" on page 163 for information on how a Field (in a Class) may be used as a Trigger.

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally, providing a significant performance improvement.

For example, the idiom $B V / \imath \rho A$ (where $B V$ is a Boolean vector and A is an array) would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate ρA and store result in temporary variable temp1 (temp1 is just an arbitrary name for the purposes of this explanation)
2. Evaluate rtemp1 and store result in temporary variable temp2.
3. Evaluate BV/temp2
4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and processed in a single step as if it were a single primitive function. In this case, the resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly identical to an expression given in the Idiom List table will not be recognised.

For example, $\overline{\mathrm{A}} \mathrm{V} \imath$ will be recognised as an idiom, but ($\overline{A V}$) \imath will not. Similarly, $($,$) / would not be recognized as the Join idiom.$

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

Type	Description	Rank	Description
C	Character	S	Scalar or 1-item vector
B	Boolean	V	Vector
N	Numeric	M	Matrix
P	Nested (pointer)	A	Array (any rank)
A	Any type		

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Expression	Description
$\rho \rho A$	Rank
BV/ $\sim N S$	Sequence selection
BV/ıpA	Index selection
$N A っ * \subset A$	Array selection
A $\{$ \} A	Sink
A $\{\alpha\}$ A	Left (Lev)
A $\{\omega\}$ A	Right (Dex)
A $\{\alpha \omega\}$ A	Link
\{0\}A	Zero
\{0\} ${ }^{*} \mathrm{~A}$	Zero Each
, /PV	Join
\%/PV	Join along first axis
دфA	Upper right item ($\mathrm{ML}^{\text {< } 2 \text {) }}$
$\uparrow \phi$ A	Upper right item (($M L<2$) $^{\text {c }}$
эф, A	Lower right item ($(\mathrm{MLL}<2)$
$\uparrow \phi, A$	Lower right item ($\mathrm{D}_{\text {ML }}$ <2)
$0=\rho V$	Zero shape
$0=\rho \rho A$	Zero rank
$0=\equiv \mathrm{A}$	Zero depth
DAVっCA	Atomic vector index (Classic Edition only; use (DUCS)
M $\{(\downarrow \alpha) \imath \downarrow \omega\} M$	Matrix Iota
\downarrow ¢ \dagger PV	Nested vector transpose ($(\square M L<2)$
\фכPV	Nested vector transpose ($(\square M L<2)$
${ }^{\wedge}$ \' '=CA	Mask of leading blanks.
+/^\' '=CA	Number of leading blanks
+/^\BA	Number of leading ones

Expression	Description
$\{(v \backslash 1$ ' $\neq \omega) / \omega\}$ CV	Trim leading blanks
$\{(+/ \wedge \backslash ' \quad '=\omega) \downarrow \omega\} C V$	Trim leading blanks
$\sim \square^{\prime} \quad{ }^{\prime \prime} \downarrow$ CA	No-blank split
$\left\{(+/ v \backslash\right.$ ' ' $\left.\neq \phi \omega) \uparrow^{\prime \prime} \downarrow \omega\right\} C A$	No-trailing-blank split
$\bigcirc \circ \rho \times{ }^{\text {a }}$	Length of first axis of each sub-array ($\mathrm{CML}<2$)
	Length of first axis of each sub-array ($\mathrm{C} M \mathrm{~L} \geq 2$)
A, \leftarrow A	Catenate To
$A ; \leftarrow A$	Catenate to (along first axis)
$\{\omega[\Delta \omega]\} V$	Sort up vector
$\{\omega[\dagger \omega]\} \vee$	Sort down vector
\{ ω [$\dagger \omega ;]\} \mathrm{M}$	Sort up matrix
\{ ω [$\downarrow \omega ;]$] ${ }^{\text {a }}$	Sort down matrix
$1=\equiv \mathrm{A}$	Is depth 1
$1=\equiv, ~ A$	Is simple (depth 1 or 0)
$0 \in \rho A$	Is null
$\sim 0 \in \rho A$	Is non-null
\rightarrow - A	First sub-array along first axis
-1/A	First sub-array along last axis
$1+$ A	Last sub-array along first axis
-/A	Last sub-array along last axis
* N	Euler's idiom
$0=0$	Is first dimension empty ($\mathrm{MLL}<2$)
$0 \neq \sim$	Is first dimension not empty (\square ML <2)

Notes

Sequence Selection / \imath and Index Selection / $_\rho$, as well as providing an execution time advantage, reduce intermediate workspace usage and consequently, the incidence of memory compactions and the likelihood of a WS FULL.

Array Selection NV $\lrcorner \cdots \subset$ A, is implemented as A [NV], which is significantly faster. The two are equivalent but the former may now be used as a matter of taste with no performance penalty.

Join , / is currently special-cased only for vectors of vectors or scalars. Otherwise, the expression is evaluated as a series of concatenations. Recognition of this idiom turns join from an n-squared algorithm into a linear one. In other words, the improvement factor is proportional to the size of the argument vector.

Upper and Lower Right Item now take constant time. Without idiom recognition, the time taken depends linearly on the number of items in the argument.

Zero Depth $0=\equiv$ takes a small constant time. Without idiom recognition, time taken would depend on the size and depth of the argument, which in the case of a deeply nested array, could be significant.

Nested vector transpose $\downarrow \phi \uparrow$ is special-cased only for a vector of nested vectors, each of whose items is of the same length.

Matrix Iota $\{(\downarrow \alpha) \imath \downarrow \omega\}$. As well as being quicker, the Matrix Iota idiom can accommodate much larger matrices. It is particularly effective when bound with a left argument using the compose operator:

```
find*mato{(\downarrow\alpha)\imath\downarrow\omega} \rho find rows in mat table.
```

In this case, the internal hash table for mat is retained so that it does not need to be generated each time the monadic derived function f ind is applied to a matrix argument.

Trim leading blanks $\left\{\left(\nu \backslash{ }^{\prime} \neq \omega\right) / \omega\right\}$ and $\left\{\left(+/ \wedge \backslash^{\prime} \quad=\omega\right) \downarrow \omega\right\}$ are two codings of the same idiom. Both use the same C code for evaluation.

No-blank split ~o ' $\quad \cdots \downarrow$ typically takes a character matrix argument and returns a vector of character vectors from which, all blanks have been removed. An example might be the character matrix of names returned by the system function ZNL . In general, this idiom accommodates character arrays of any rank.

No-trailing-blank split $\left\{\left(+/ v \backslash '^{\prime} \neq \phi \omega\right) \uparrow^{*} \downarrow \omega\right\}$ typically takes a character matrix argument and returns a vector of character vectors. Any embedded blanks in each row are preserved but trailing blanks are removed. In general, this idiom accommodates character arrays of any rank.

Lengths $\supset \circ \rho \cdots \mathrm{A}(\square \mathrm{ml}<2)$ or $\left.\uparrow \circ \rho \cdot{ }^{\mathrm{A}(\square \mathrm{ml}} \mathrm{>} 2\right)$ avoids having to create an intermediate nested array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each vector.

24
For an array of matrices, it returns a simple array of the number of rows in each matrix.

5 21...

```
\nu०\rho``पCR"\downarrowDNL 3 & Lines in functions
```

Catenate To A,$\leftarrow A$ and $A ; \leftarrow$ Aoptimise the catenation of an array to another array along the last and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector to an existing vector.

```
props,\leftarrowc 'Posn' 0 0
props,*c'Size' 50 50
vector, }\leftarrow2+
```

Note that the idiom is not applied if the value of vector V is shared with another symbol in the workspace, as illustrated in the following examples:

In this first example, the idiom is used to perform the catenation to V 1 .

$$
\begin{aligned}
& V 1 \leftarrow 210 \\
& V_{1}, \leftarrow 11
\end{aligned}
$$

In the second example, the idiom is not used to perform the catenation to V 1 , because its value is at that point shared with V 2 .

```
V1&r10
V2<-V1
V1,\leftarrow11
```

In the third example, the idiom is not used to perform the catenation to V in Join[1] because its value is at that point shared with the array used to call the function.
[1]
$\nabla \mathrm{V} \leftarrow \mathrm{V}$ Join A
$V, \leftarrow A$
∇
(r10) Join 11
1234567891011
Sub-array selection idioms $\vdash \leftarrow A, \vdash / A,-\vdash A$, and \dashv / A return the first (respectively last) rank ($O \Gamma^{-1} 1+\rho \rho A$) sub-array along the first (respectively last) axis of A. For example, if V is a vector, then:

$-/ / V$	First item of vector
F/V	Last item of vector

Similarly, if M is a matrix, then:

$-H M$	First row of matrix
$-T M$	First column of matrix
$-\vdash M$	Last row of matrix
$-/ M$	Last column of matrix

The idiom generalises uniformly to higher-rank arrays.
Euler's idiom * O p produces accurate results for right argument values that are a multiple of $0 \mathrm{JO.5}$. This is so that Euler's famous identity $0=1+* 00 \mathrm{~J} 1$ holds, even though the machine cannot represent multiples of pi, including 00 J 1 , accurately.

Search Functions and Hash Tables

Primitive dyadic search functions, such as \imath (index of) and ϵ (membership) have a principal argument in which items of the other subject argument are located.

In the case of \imath, the principal argument is the one on the left and in the case of ϵ, it is the one on the right. The following table shows the principal (P) and subject (s) arguments for each of the functions.

$P \quad s$	Index of
$s \in P$	Membership
$s \cap P$	Intersection
$P \cup s$	Union
$s \sim P$	Without
$P\{(\downarrow \alpha) \imath \downarrow \omega\} s$	Matrix Iota (idiom)
$P \circ 4$ and $P \circ \downarrow$	Sort

The Dyalog APL implementation of these functions already uses a technique known as hashing to improve performance over a simple linear search. (Note that $\underline{\epsilon}$ (find) does not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is rewarded by a considerably quicker search for each item in the subject. Unfortunately, the hash table is discarded each time the function completes and must be reconstructed for a subsequent call (even if its principal argument is identical to that in the previous one).

For optimal performance of repeated search operations, the hash table may be retained between calls, by binding the function with its principal argument using the primitive \circ (compose) operator. The retained hash table is then used directly whenever this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent application of the derived function. This usually occurs in one of two ways: either the derived function is named for later (and repeated) use, as in the first example below or it is applied repeatedly as the operand of a primitive or defined operator, as in the second example.

Example: naming a derived function.

```
    wordsゃ'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'
    find*wordsor \rho monadic find
    find'blk' 'blu' 'grn' 'ylo' }
    find'grn' 'brn' 'ylo' 'red' \rho fast find
```

function
7532
3421

Example: repeated application by (${ }^{\circ}$) each operator.
$10000 \mathrm{DA} \mathrm{H}^{\prime}$ This' 'And' 'That'

Locked Functions \& Operators

A defined operation may be locked by the system function DLOCK. A locked operation may not be displayed or edited. The system function DCR returns an empty matrix of shape 00 and the system functions DNR and $\square V R$ return an empty vector for a locked operation.

Stop, trace and monitor settings may be established by the system functions \mathbb{C} TOP, DTRACE and DMONITOR respectively. Existing stop, trace and monitor settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pendent when execution is suspended. The state indicator is cut back as described below.

The State Indicator

The state of execution is dynamically recorded in the STATE INDICATOR. The state indicator identifies the chain of execution for operators, functions and the evaluated or character input/output system variables (\square and $\mathbb{\square}$). At the top of the state indicator is the most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a signal induced by the system function पSIGNAL or by a stop control set by the system function $\square S T O P$. If the interrupt (or event which caused the interrupt) is not defined as a trappable event by the system variable DTRAP, the state indicator is cut back to the first of either a defined operation or the evaluated input prompt (■) such that there is no locked defined operation in the state indicator. The topmost operation left in the state indicator is said to be SUSPENDED. Other operations in the chain of execution are said to be PENDENT.

The state indicator may be examined when execution is suspended by the system commands) SI and) SINL. The names of the defined operations in the state indicator are given by the system functions $\square S I$ and $\overline{2} S I$ while the line numbers at which they are suspended or pendent is given by the system variable DLC .

Suspended execution may be resumed by use of the Branch function (see "Branch:" on page 232). Whilst execution is suspended, it is permitted to enter any APL expression for evaluation, thereby adding to the existing state indicator. Therefore, there may be more than one LEVEL OF SUSPENSION in the state indicator. If the state indicator is cut back when execution is suspended, it is cut back no further than the prior level of suspension (if any).

Examples

[1] \quad| F F |
| ---: |
| G |

∇

```
[1] 'FUNCTION G'+
    \nabla
```

 \(\Phi^{\prime} \mathrm{F}^{\prime}\)
 SYNTAX ERROR
G[1] 'FUNCTION G'+
\wedge
) SI
\#.G[1]*
\#. $\mathrm{F}[1]$
\pm

```
OLOCK'G'
&'F'
SYNTAX ERROR
F[1] G
    )SI
#.F[1]*
$
#.G[1]*
#.F[1]
$
```

A suspended or pendent operation may be edited by the system editor or redefined using DFX provided that it is visible and unlocked. However, pendent operations retain their original definition until they complete, or are cleared from the State Indicator. When a new definition is applied, the state indicator is repaired if necessary to reflect changes to the operations, model syntax, local names, or labels.

Dynamic Functions \& Operators

A Dynamic Function (operator) is an alternative function definition style suitable for defining small to medium sized functions. It bridges the gap between operator expressions: $r a n k \leftarrow \rho \circ \rho$ and full 'header style' definitions such as:

```
\nabla rslt+larg func rarg;local...
```

In its simplest form, a dynamic function is an APL expression enclosed in curly braces \{\} possibly including the special characters α and ω to represent the left and right arguments of the function respectively. For example:

```
    {(+/\omega)\div\rho\omega} 1 2 3 4 & Arithmetic Mean (Average)
2.5
    3{\omega*\div\alpha} 64 \rho \alphath root
4
```

Dynamic functions can be named in the normal fashion:

```
    mean < {(+/\omega) \div\rho\omega}
    mean"(2 3)(4 5)
2.5 4.5
```

Dynamic Functions can be defined and used in any context where an APL function may be found, in particular:

- In immediate execution mode as in the examples above.
- Within a defined function or operator.
- As the operand of an operator such as each (*).
- Within another dynamic function.
- The last point means that it is easy to define nested local functions.

Multi-Line Dynamic Functions

The single expression which provides the result of the Dynamic Function may be preceded by any number of assignment statements. Each such statement introduces a name which is local to the function.

For example in the following, the expressions sum \leftarrow and num \leftarrow create local variables sum and num.

```
mean<{ & Arithmetic mean
    sum*+/\omega & Sum of elements
    num*o\omega & Number of elements
    sum\divnum & Mean
}
```

Note that Dynamic Functions may be commented in the usual way using ρ.
When the interpreter encounters a local definition, a new local name is created. The name is shadowed dynamically exactly as if the assignment had been preceded by:
Ushadow name \diamond.
It is important to note the distinction between the two types of statement above.
There can be many assignment statements, each introducing a new local variable, but only a single expression where the result is not assigned. As soon as the interpreter encounters such an expression, it is evaluated and the result returned immediately as the result of the function.

For example, in the following,

```
mean\leftarrow{ A Arithmetic mean
    sum*+/\omega 的 Sum of elements
    num\leftarrow\rho\omega { Number of elements
    sum,num A Attempt to show sum,num (wrong)!
    sum\divnum & ... and return result.
}
```

... as soon as the interpreter encounters the expression sum, num, the function terminates with the two element result (sum, num) and the following line is not evaluated.

To display arrays to the session from within a Dynamic function, you can use the explicit display forms $\square \leftarrow$ or $\square \leftarrow$ as in:

```
mean\leftarrow{ & Arithmetic mean
    sum++/\omega & Sum of elements
    num*o\omega a Number of elements
    D<sum,num A show sum,num.
    sum\divnum & ... and return result.
}
```

Note that local definitions can be used to specify local nested Dynamic Functions:

```
rms}\leftarrow
        root }< {\omega*0.5
        mean }{{(+/\omega)\div\rho\omega
        square }<{\omega\times\omega
        root mean square \omega
}
```

```
    ^ Root Mean Square
```

 ^ Root Mean Square
 \rho \nabla Square root
 \rho \nabla Square root
 \rho \nabla Mean
 \rho \nabla Mean
 ค \nabla Square
    ```
    ค \nabla Square
```


Default Left Argument

The special syntax: α +expr is used to give a default value to the left argument if a Dynamic Function is called monadically. For example:

```
root+{ & ath root
    \alpha<2 & default to sqrt
    \omega*\div\alpha
}
```

The expression to the right of $\alpha \leftarrow$ is evaluated only if its Dynamic Function is called with no left argument.

Guards

A Guard is a Boolean-single valued expression followed on the right by a ' : ' For example:

```
0\equiv\equiv\omega: & Right arg simple scalar
\alpha<0: & Left arg negative
```

The guard is followed by a single APL expression: the result of the function.

```
\omega\geq0: \omega*0.5 & Square root if non-negative.
```

A Dynamic function may contain any number of guarded expressions each on a separate line (or collected on the same line separated by diamonds). Guards are evaluated in turn until one of them yields a 1 . The corresponding expression to the right of the guard is then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default result of the function. For example:

```
sign \(+\{\)
    \(\omega>0:\) '+ve' ค Positive
    \(\omega=0\) : 'zero' \(\quad\) д zero
    '-ve' \(\quad\) ค Negative (Default)
\}
```

Local definitions and guards can be interleaved in any order.
Note again that any code following the first unguarded expression (which terminates the function) could never be executed and would therefore be redundant.

```
log\leftarrow{ \rho Append \omega to file \alpha.
    tie\leftarrow\alpha \fstie 0 a tie number for file,
    cno<\omega Dfappend tie a new component number,
    tie-पfuntie tie \rho untie file,
    1:rslt+cno & comp number as shy
}
```

result.

Shy Result

Dynamic Functions are usually 'pure' functions that take arguments and return explicit results. Occasionally, however, the main purpose of the function might be a side-effect such as the display of information in the session, or the updating of a file, and the value of a result, a secondary consideration. In such circumstances, you might want to make the result 'shy', so that it is discarded unless the calling context requires it. This can be achieved by assigning a dummy variable after a (true) guard:

Static Name Scope

When an inner (nested) Dynamic Function refers to a name, the interpreter searches for it by looking outwards through enclosing Dynamic Functions, rather than searching back along the execution stack. This regime, which is more appropriate for nested functions, is said to employ static scope instead of APL's usual dynamic scope. This distinction becomes apparent only if a call is made to a function defined at an outer level. For the more usual inward calls, the two systems are indistinguishable.

For example, in the following function, variable type is defined both within which itself and within the inner function $f n 1$. When $f n 1$ calls outward to $f n 2$ and $f n 2$ refers to type, it finds the outer one (with value 'static') rather than the one defined in $f \mathrm{n} 1$:

```
    which \(\leftarrow\{\)
        typer'static'
        fn1 \(1 \leftarrow\)
            type \({ }^{\prime}\) dynamic'
            fn2 \(\omega\)
        \}
        \(f n 2 \leftarrow\{\)
            type \(\omega\)
        \}
        fn1 \(\omega\)
    \}
    which'scope'
static scope
```


Tail Calls

A novel feature of the implementation of Dynamic Functions is the way in which tail calls are optimised.

When a Dynamic Function calls a sub-function, the result of the call may or may not be modified by the calling function before being returned. A call where the result is passed back immediately without modification is termed a tail call.

For example in the following, the first call on function f act is a tail call because the result of fact is the result of the whole expression, whereas the second call isn't because the result is subsequently multiplied by ω.

```
(\alpha\times\omega)fact \omega-1 \rho Tail call on fact.
\omega\timesfact \omega-1 \rho Embedded call on fact.
```

Tail calls occur frequently in Dynamic Functions, and the interpreter optimises them by re-using the current stack frame instead of creating a new one. This gives a significant saving in both time and workspace usage. It is easy to check whether a call is a tail call by tracing it. An embedded call will pop up a new trace window for the called function, whereas a tail call will re-use the current one.

Using tail calls can improve code performance considerably, although at first the technique might appear obscure. A simple way to think of a tail call is as a branch with arguments. The tail call, in effect, branches to the first line of the function after installing new values for ω and α.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different order depending on whether we want to test at the 'top' or the 'bottom' of the loop.

1. Initialise loop control variable(s). $\boldsymbol{\rho}$ init
2. Test loop control variable.a test
3. Process body of loop. p proc
4. Modify loop control variable for next iteration.9 mod
5. Branch to step 2.9 jump

For example, in classical APL you might find the following:

```
    \nabla value\leftarrowlimit loop valuen init
[1] top:->(\squareCT>value-limit)/Op test
[2] value\leftarrowNext valuen proc, mod
[3] ->topq jump
\nabla
```

Control structures help us to package these steps:

```
    \nabla value\leftarrowlimit loop valuen init
[1] :While पCT<value-limita test
[2] value*Next valuen proc, mod
[3] :EndWhilea jump
\nabla
```

Using tail calls:

```
loop<{a init
    \squareCT>\alpha-\omega:\omega\rho test
    \alpha \nabla Next \omega^ proc, mod, jump
}
```


Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers, followed by the digraph: : :, followed by an expression, the body of the guard, to be evaluated as the result of the function. For example:

```
11 5 :: \omega\times0 & Trap DOMAIN and LENGTH errors.
```

In common with : Trap and CTRAP, error numbers 0 and 1000 are catchalls for synchronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for an error-guard that matches the error. If one is found, the execution environment is unwound to its state immediately prior to the error-guard's execution and the body of the error-guard is evaluated as the result of the function. This means that, during evaluation of the body, the guard is no longer in effect and so the danger of a hang caused by an infinite 'trap loop', is avoided.

Notice that you can provide 'cascading' error trapping in the following way:

```
0::try_2nd
0::try_1st
    expr
```

In this case, if expr generates an error, its immediately preceding: $0:$: catches it and evaluates try _1st leaving the remaining error-guard in scope. If $t r y _1 s t$ fails, the environment is unwound once again and try_2nd is evaluated, this time with no error-guards in scope.

Examples:

Open returns a handle for a component file. If the exclusive tie fails, it attempts a share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is returned.

```
open<{ & Handle for component file \omega.
    0::0 & Fails:: return O handle.
    22::\omega DFCREATE O & FILE NAME:: create new one.
    24 25::\omega DFSTIE O & FILE TIED:: try share tie.
    \omega DFTIE 0 a Attempt to open file.
}
```

An error in div causes it to be called recursively with improved arguments.

```
div <{
    \alpha<1
    5::\uparrow\nabla/\downarrow\uparrow\alpha \omega
    11::\alpha \nabla \omega+\omega=0
    \alpha\div\omega
}
```

Notice that some arguments may cause div to recur twice:

```
    6 4 2 div 3 2
-> 6 4 2 div 3 2 0
-> 6 4 2 div 3 2 1
-> 2 2 2
```

The final example shows the unwinding of the local environment before the errorguard's body is evaluated. Local name trap is set to describe the domain of its following error-guard. When an error occurs, the environment is unwound to expose trap's statically correct value.

```
    add \(-\{\)
        trap*'domain' \(\diamond\) 11::trap
        trapł'length'
        \(\alpha+\omega\)
    \}
    2 add 3 ค Addition succeeds
```

5
2 add 'three' $ค$ DOMAIN ERROR generated.
domain
length ${ }^{2} 3$ add 456 a LENGTH ERROR generated.

Dynamic Operators

The operator equivalent of a dynamic function is distinguished by the presence of either of the compound symbols $\alpha \alpha$ or $\omega \omega$ anywhere in its definition. $\alpha \alpha$ and $\omega \omega$ represent the left and right operand of the operator respectively.

Example

The following monadic each operator applies its function operand only to unique elements of its argument. It then distributes the result to match the original argument. This can deliver a performance improvement over the primitive each (*) operator if the operand function is costly and the argument contains a significant number of duplicate elements. Note however, that if the operand function causes side effects, the operation of dynamic and primitive versions will be different.

```
each}\leftarrow
\rho Fast each:
    shp<o\omega & Shape and ...
    vect,\omega & ... ravel of arg.
    nub<uvec a Vector of unique elements.
    res }<\alpha\mp@subsup{\alpha}{}{*}\mathrm{ nub & Result for unique elts.
    idx<nubivec & Indices of arg in nub ...
    shppidxد"cres & ... distribute result.
}
```

The dyadic e l se operator applies its left (else right) operand to its right argument depending on its left argument.

```
else<{
        \alpha: \alpha\alpha \omega ค True: apply Left operand
        \omega\omega \omega \rho Else, .. Right ..
}
O 1 「elseL` 2.5 & Try both false and true.
```

23

Recursion

A recursive Dynamic Function can refer to itself using its name explicitly, but because we allow unnamed functions, we also need a special symbol for implicit selfreference: ' ∇ '. For example:

```
fact<{ & Factorial \omega.
    \omega<1: 1 \rho Small \omega, finished,
    \omega\times\nabla \omega-1 \rho Otherwise recur.
}
```

Implicit self-reference using ' ∇ ' has the further advantage that it incurs less interpretative overhead and is therefore quicker. Tail calls using ' ∇ ' are particularly efficient.

Recursive Dynamic Operators refer to their derived functions, that is the operator bound with its operand(s) using ∇ or the operator itself using the compound symbol: $\nabla \nabla$. The first form of self reference is by far the more frequently used.

```
pow<{ a Function power.
    \alpha=0:\omega 的 Apply function operand \alpha times.
    (\alpha-1)\nabla \alpha\alpha \omega ค \alpha\alpha \alpha\alpha \alpha\alpha ... \omega
}
```

The following example shows a rather contrived use of the second form of (operator) self reference. The exp operator composes its function operand with itself on each recursive call. This gives the effect of an exponential application of the original operand function:

```
exp}+
        \alpha=0:\alpha\alpha \omega
        (\alpha-1) \alpha\alpha\circ\alpha\alpha\alpha \nabla\nabla \omega
}
succ}\leftarrow{1+\omega
10 succ exp 0
```

1024

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and Operators in an attempt to find Pythagorean triples: ($\left.\begin{array}{lll}3 & 4 & 5\end{array}\right)\left(\begin{array}{lll}5 & 12 & 13\end{array}\right) \ldots$

```
    sqrt\leftarrow{\omega*0.5} A Square root.
    sqrt 9 16 25
345
    hyp\leftarrow{sqrt+/\nu\omega*2} & Hypoteneuse of
triangle.
    hyp(3 4)(4 5)(\begin{array}{ll}{5}&{12}\end{array})
56.403124237 13
    intg\leftarrow{\omega=\\omega} & Whole number?
    intg 2.5 3 4.5
0 1 0
    pyth\leftarrow{intg hyp \omega} & Pythagorean pair?
    pyth(3 4)(4 9)(\begin{array}{ll}{5}&{12)}\end{array})
101
    pairs\leftarrow{,\imath\omega \omega} A Pairs of numbers 1..\omega.
    pairs 3
114}10124\mp@code{1
    filter}\leftarrow{(\alpha\alpha\omega)/\omega} & Op: \omega filtered by \alpha\alpha
    pyth filter pairs 12 & Pythagorean pairs 1.. 12
34}44
```

So far, so good, but we have some duplicates: (68) is just double (34).

```
    rpm\leftarrow{ & Relatively prime?
        \omega=0:\alpha=1
    A C.f. Euclid's gcd.
    A Note the /`
    rpm(2 4)(3 4)(6 8)(16 27)
0101
    rpm filter pyth filter pairs 20
3 4 4
```

We can use an operator to combine the tests:

```
    and < {
        mask+\alpha\alpha \omega
selects...
        mask\\omega\omega mask/\omega
predicate.
    }
    llllllllll
```

Better, but we still have some duplicates: (3 4) (4) 3).

$$
\text { less } \leftarrow\{</ \partial \omega\}
$$

10

$$
\text { less(3 4)(4 } 3 \text {) }
$$

$$
\begin{array}{lllllllll}
& & \text { less and pyth and rpm filter pairs } 40 \\
3 & 4 & 5 & 12 & 7 & 24 & 8 & 15 & 9 \\
\hline
\end{array}
$$

And finally, as promised, triples:

$$
\begin{array}{r}
\{\omega \text {, hyp } \omega\} \text { "less and pyth and rpm filter pairs } 35 \\
51213 \quad 72425 \quad 81517 \text { 12 } 3537 \text { 20 } 2129
\end{array}
$$

A Larger Example

Function tokens uses nested local D-Fns to split an APL expression into its constituent tokens. Note that all calls on the inner functions: lex, acc, and the unnamed D-Fn in each token case, are tail calls. In fact, the only stack calls are those on function: all, and the unnamed function: $\left\{\omega \nu^{-1} 1 \phi \omega\right\}$, within the 'Char literal' case.

```
    tokens\leftarrow{ & Lex of APL src
line.
    alph<\squareA, पÁ,'_\Delta\Delta' , 26^17\\\AV
    al\\leftarrow{+/^\\alpha\in\omega}
    acc}\leftarrow{(\alpha,\uparrow/\omega)\ex\supset\downarrow/\omega
        lex\leftarrow{
            0=\rho\omega:\alpha\diamondhd\leftarrow\uparrow\omega
done.
                hd=' ':\alpha{
                    size\leftarrow\omega all' '
                        \alpha acc size }
                    }\omega
                    hd\epsilonalph:\alpha{
                            A Name
                        size\leftarrow\omega all alph, पD
                        \alpha acc size \omega
                    }\omega
                    hd\epsilon'\square:': }\alpha
                            A System Name/Keyword
                        size\leftarrow\omega all hd,alph
                        \alpha acc size \omega
                }\omega
                hd='''':\alpha{ & Char literal
                        size\leftarrow+/^\{\omega\mp@subsup{v}{}{-}1\phi\omega}\not=\hd=\omega
                        \alpha acc size \omega
}\omega
hd\epsilon\squareD,'-':\alpha{ A Numeric literal
                        size\leftarrow\omega all [D,'.-E'
                        \alpha acc size \omega
                    }\omega
                hd='\rho':\alpha acc(\rho\omega)\omega \rho Comment
                \alpha acc 1 \omega { Single char token.
            }
        (0\rhoc'')lex,\omega
    }
        display tokens'xtok\leftarrowsize\uparrowsrce A Next token'
```


Restrictions

Currently multi-line Dynamic Functions can't be typed directly into the session. The interpreter attempts to evaluate the first line with its trailing left brace and a SYNTAX ERROR results.

Dynamic Functions need not return a result. However even a non-result-returning expression will terminate the function, so you can't, for example, call a non-resultreturning function from the middle of a Dynamic Function.

You can trace a Dynamic Function only if it is defined on more than one line. Otherwise it is executed atomically in the same way as an execute (\pm) expression. This deliberate restriction is intended to avoid the confusion caused by tracing a line and seeing nothing change on the screen.

Dynamic Functions do not currently support DCS .

Supplied Workspaces

You can find more examples of dynamic functions and operators in workspaces in the samples \backslash dfns directory.

DFNS.DWS - a selection of utility functions.
MIN.DWS - an example application.

APL Line Editor

The APL Line Editor described herein is included for completeness and for adherence to the ISO APL standard. See User Guide for a description of the more powerful fullscreen editor, DED.

Using the APL Line Editor, functions and operators are defined by entering Definition Mode. This mode is opened and closed by the del symbol, ∇. Within this mode, all evaluation of input is deferred. The standard APL line editor (described below) is used to create and edit operations within definition mode.

Operations may also be defined using the system function DFX (implicit in a DED fix) which acts upon the canonical (character), vector, nested or object representation form of an operation. (See "Fix Definition: " on page 465 for details.)

Functions may also be created dynamically or by function assignment.
The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening ∇ symbol is followed by the header line of a defined operation. Redundant blanks in the request are permitted except within names. If acceptable, the editor prompts for the first statement of the operation body with the line-number 1 enclosed in brackets. On successful completion of editing, the defined operation becomes the active definition in the workspace.

Example

| | $\nabla R \leftarrow F O O$
 $[1]$ $R \leftarrow 10$
 $[2]$ ∇ |
| :--- | :--- |
| | FOO |
| 10 | |

The given operation name must not have an active referent in the workspace, otherwise the system reports defn error and the system editor is not invoked:

```
        )VARS
SALES X Y
    \nablaR+SALES Y
defn error
```

The header line of the operation must be syntactically correct, otherwise the system reports defn error and the system editor is not invoked:

```
    \nablaR&A B C D:G
```

defn error

Listing Defined Operation

The ∇ symbol followed by the name of a defined operation and then by a closing ∇, causes the display of the named operation. Omitting the function name causes the suspended operation (i.e. the one at the top of the state indicator) to be displayed and opened for editing.

Example

∇ FOOV
$\nabla \mathrm{R}+\mathrm{FOO}$
[1] $\mathrm{R} \leftarrow 10$
∇

∇
$\nabla \mathrm{R} \leftarrow \mathrm{FOO}$
[1] $\quad R+10$
[2]

Editing Active Defined Operation

Definition mode is entered by typing ∇ followed optionally by a name and editing directive.

The ∇ symbol on its own causes the suspended operation (i.e. the one at the top of the state indicator) to be displayed. The editor then prompts for a statement or editing directive with a line-number one greater than the highest line-number in the function. If the state indicator is empty, the system reports defn error and definition mode is not entered.

The ∇ symbol followed by the name of an active defined operation causes the display of the named operation. The editor then prompts for input as described above. If the name given is not the name of an active referent in the workspace, the opening request is taken to be the creation of a new operation as described in paragraph 1. If the name refers to a pendent operation, the editor issues the message warning pendent operation prior to displaying the operation. If the name refers to a locked operation, the system reports defn error and definition mode is not entered.

The ∇ symbol followed by the name of an active defined operation and an editing directive causes the operation to be opened for editing and the editing directive actioned. If the editing directive is invalid, it is ignored by the editor which then prompts with a line-number one greater than the highest line-number in the operation. If the name refers to a pendent operation, the editor issues the message warning pendent operation prior to actioning the editing directive. If the name refers to a locked operation, the system reports defn error and definition mode is not entered.

On successful completion of editing, the defined operation becomes the active definition in the workspace which may replace an existing version of the function. Monitors, and stop and trace vectors are removed.

Example

$\nabla \mathrm{FOO}[2]$
[2] $R \leftarrow R * 2$
[3] ∇

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank characters either after the operation name on opening definition mode for an active defined function, or after a line-number prompt.

| Syntax | Description |
| :--- | :--- |
| ∇ | Closes definition mode |
| $[\square]$ | Displays the entire operation |
| $[\square n]$ | Displays the operation starting at line n |
| $[n \square]$ | Displays only line n |
| $[\Delta n]$ | Deletes line n |
| $[n \Delta m]$ | Deletes m lines starting at line n |
| $[n]$ | Prompts for input at line n |
| $[n] s$ | Replaces or inserts a statement at line n |
| $[n \square m]$ | Edits line n placing the cursor at character position m where an
 Edit Control Symbol performs a specific action. |

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are assigned as consecutive integers, beginning with [0] for the header line. The number associated with an operation line remains the same for the duration of the definition mode unless altered by editing directives. Additional lines may be inserted by decimal numbering. Up to three places of decimal are permitted. On closing definition mode, operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line or an editing directive. A statement line replaces the existing line (if there is one) or becomes an additional line in the operation:

```
    \nablaR\leftarrowA PLUS B
[1] }R\leftarrowA+
[2]
```


Position

The editing directive [n], where n is a line number, causes the editor to prompt for input at that line number. A statement or another editing directive may be entered. If a statement is entered, the next line number to be prompted is the previous number incremented by a unit of the display form of the last decimal digit. Trailing zeros are not displayed in the fractional part of a line number:

```
[2] [0.8]
[0.8] ค MONADIC OR DYADIC +
[0.9] ค A }\leftrightarrow\mathrm{ OPTIONAL ARGUMENT
[1]
```

The editing directive $[\mathrm{n}] \mathrm{s}$, where n is a line number and s is a statement, causes the statement to replace the current contents of line n , or to insert line n if there is none:

```
[1] [0] R\leftarrow{A} PLUS B
[1]
```


Delete

The editing directive [Δn], where n is a line number, causes the statement line to be deleted. The form $[n \Delta m]$, where n is a line number and m is a positive integer, causes m consecutive statement lines starting from line number n to be deleted.

Edit

The editing directive $[\mathrm{n} \square \mathrm{m}]$, where n is a line number and m is an integer number, causes line number n to be displayed and the cursor placed beneath the $m\{t h\}$ character on a new line for editing. The response is taken to be edit control symbols selected from:

| $/$ | to delete the character immediately above the symbol. |
| :--- | :--- |
| 1 to 9 | to insert from 1 to 9 spaces immediately prior to the character above
 the digit. |
| A to Z | to insert multiples of 5 spaces immediately prior to the character
 above the letter, where $\mathrm{A}=5, \mathrm{~B}=10, \mathrm{C}=15$ and so forth. |
| , | to insert the text after the comma, including explicitly entered
 trailing spaces, prior to the character above the comma, and then re-
 display the line for further editing with the text inserted and any
 preceding deletions or space insertions also effected. |
| . | to insert the text after the comma, including explicitly entered
 trailing spaces, prior to the character above the comma, and then
 complete the edit of the line with the text inserted and any
 preceding deletions or space insertions also effected. |

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if there are only deletion or space insertion symbols, the statement line is re-displayed with characters deleted and spaces inserted as specified. The cursor is placed at the first inserted space position or at the end of the line if none. Characters may be added to the line which is then interpreted as seen.

The line number may be edited.

Examples

```
[1] [1]7]
[1] \(\quad R \leftarrow A+B\)
    \(\rightarrow\left(0=\square N C^{\prime} A^{\prime}\right) \rho 1+\square L C\) 。
[1] \(\rightarrow\left(0=\square N C^{\prime} A^{\prime}\right) \rho 1 \leftarrow \square L C \diamond R \leftarrow A+B\)
    .\(\Delta \rightarrow E N D\)
[2] \(R \leftarrow B\)
[3] END:
[4]
```

The form $[n \square 0]$ causes the line number n to be displayed and the cursor to be positioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive [प] causes the entire operation to be displayed. The form [Dn] causes all lines from line number n to be displayed. The form [$\mathrm{n} \|$] causes only line number n to be displayed:

```
[4] [0\]
[0] R\leftarrow{A} PLUS B
[0]
[0] [प]
[0] R\leftarrow{A} PLUS B
[0.1] ค MONADIC OR DYADIC +
[1] }->(0=\squareN\mp@subsup{C}{}{\prime}A')\rho1+\squareLC \diamond R\leftarrowA+B \diamond ->EN
[2] R\leftarrowB
[3] 'END:
[4]
```


Close Definition Mode

The editing directive ∇ causes definition mode to be closed. The new definition of the operation becomes the active version in the workspace. If the name in the operation header (which may or may not be the name used to enter definition mode) refers to a pendent operation, the editor issues the message warning pendent operation before exiting. The new definition becomes the active version, but the original one will continue to be referenced until the operation completes or is cleared from the State Indicator.

If the name in the operation header is the name of a visible variable or label, the editor reports defn error and remains in definition mode. It is then necessary to edit the header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports defn error, and re-displays the line leaving the cursor beyond the end of the text on the line. Backspace/linefeed editing may be used to alter or cancel the change:

```
[3] [0\] - display line 0
[0] R\leftarrow{A} PLUS B
[0] R\leftarrow{A} PLUS B:G;H - put syntax error in line O
defn error
[0] R&{A} PLUS B:G;H - line redisplayed
    ;G;H - backspace/linefeed editing
[1]
```

Local names may be repeated. However, the line editor reports warning messages as follows:

1. If a name is repeated in the header line, the system reports "warning duplicate name" immediately.
2. If a label has the same name as a name in the header line, the system reports "warning label name present in line 0 " on closing definition mode.
3. If a label has the same name as another label, the system reports "warning duplicate label" on closing definition mode.

Improper syntax in expressions within statement lines of the function is not detected by the system editor with the following exceptions:

- If the number of opening parentheses in each entire expression does not equal the number of closing parentheses, the system reports "warning unmatched parentheses", but accepts the line.
- If the number of opening brackets in each entire expression does not equal the number of closing brackets, the system reports "warning unmatched brackets", but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other syntactical errors in statement lines will remain undetected until the operation is executed.

Example

```
[4] R\leftarrow(A[;1)=2) t& EXP,'×2
warning unmatched parentheses
warning unmatched brackets
[5]
```

Note that there is an imbalance in the number of quotes. This will result in a SYNTAX ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active version of the operation (if any) remains unchanged.

Chapter 3:

Object Oriented Programing

Introducing Classes

A Class is a blueprint from which one or more Instances of the Class can be created (instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base Class.

A Class may contain Methods, Properties and Fields (commonly referred to together as Members) which are defined within the body of the class script or are inherited from other Classes. This version of Dyalog APL does not support Events although it is intended that these will be supported in a future release. However, Classes that are derived from .Net types may generate events using 4 DNQ.

A Class that is defined to derive from another Class automatically acquires the set of Properties, Methods and Fields that are defined by its Base Class. This mechanism is described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties, Methods and Fields or by substituting those in the Base Class by providing new versions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or accessed from outside the Class or an Instance of the Class. A Private member is internal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a class can have Shared members which can be used without first creating an instance

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A class script may also be constructed from a vector of character vectors, and fixed using DFIX.

A class script begins with a: Cl ass statement and ends with a : EndClass statement.

For example, using the editor:
) CLEAR
clear ws
)ED OAnimal
[an edit window opens containing the following skeleton Class script ...]
: Class Animal
: EndClass
[the user edits and fixes the Class script]
) CLASSES
Animal
DNCc'Animal'
9.4

Editing Classes

Between the : Class and : EndClass statements, you may insert any number of function bodies, Property definitions, and other elements. When you fix the Class Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. You may not add or alter functions by editing them independently and you may not add variables by assignment or remove objects with $\bar{E} X$.

When you re-fix a Class Script using the Editor or with \square FIX, the original Class is discarded and the new definition, as specified by the Script, replaces the old one in its entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate namespace which surrounds the class and can contain functions, variables and so forth that are created by actions external to the class.

For example, if X is not a public member of the class MyCl ass, then the following expression will insert a variable X into the namespace which surrounds the class:

$$
\text { MyClass. X }<99
$$

The namespace is analogous to the namespace associated with a GUI object and will be re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel namespace are not visible from inside the Class or an Instance of the Class.

Inheritance

If you want a Class to derive from another Class, you simply add the name of that Class to the : Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

```
:Class CLASS2: CLASS1
:EndClass
```

Note that CLASS1 is referred to as the Base Class of CLASS2.
If a Class has a Base Class, it automatically acquires all of the Public Properties, Methods and Fields defined for its Base Class unless it replaces them with its own members of the same name. This principle of inheritance applies throughout the Class hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the global name of the base class is expunged, the derived class will still have the base class reference, and the base class will therefore be kept alive in the workspace. The derived class will be fully functional, but attempts to edit it will fail when it attempts to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived class has no way of detecting this, and it will continue to use the old and invisible version of the base class. Only when the derived class is re-fixed, will the new base class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the references, but if the base class is expunged first and recreated later, APL is unable to detect the substitution. You can recover from this situation by editing or re-fixing the derived class(es) after the base class has been substituted.

Classes that derive from .Net Types

You may define a Class that derives from any of the .Net Types by specifying the name of the .Net Type and including a : USING statement that provides a path to the .Net Assembly in which the .Net Type is located.

Example

```
:Class APLGreg: GregorianCalendar
:Using System.Globalization
...
:EndClass
```


Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives from a Poly object, the Class specification would be:

```
:Class Duck:'Poly'
:EndClass
```

The Base Constructor for such a Class is the DWC system function.

Instances

A Class is generally used as a blueprint or model from which one or more Instances of the Class are constructed. Note however that a class can have Shared members which can be used directly without first creating an instance.

You create an instance of a Class using the पNEW system function which is monadic.
The 1-or 2-item argument to DNEW contains a reference to the Class and, optionally, arguments for its Constructor function.

When DNEW executes, it first creates an empty instance namespace and tags it with an internal pointer to its Class.

When DNEW executes, it creates a regular APL namespace to contain the Instance, and within that it creates an Instance space, which is populated with any Instance Fields defined by the class (with default values if specified), and pointers to the Instance Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the second item of the argument to $\square N E W$. If DNEW was called without Constructor arguments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may establish variables in the instance namespace.

The result of DNEW is a reference to the instance namespace. Instances of Classes exhibit the same set of Properties, Methods and Fields that are defined for the Class.

Constructors

A Constructor is a special function defined in the Class script that is to be run when an Instance of the Class is created by DNEW. Typically, the job of a Constructor is to initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This statement may appear anywhere in the body of the function after the function header. The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, with a : Access Public statement, because like all Class members, Constructors default to being Private. Private Constructors currently have no use or purpose, but it is intended that they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.
A Class may specify any number of different Constructors of which one (and only one) may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently defined argument list which specifies the number of items expected in the Constructor argument. See "Constructor Overloading" on page 143 for details.

A Constructor function may not call another Constructor function and a constructor function may not be called directly from outside the Class. The only way a Constructor function may be invoked is by DNEW. See "Base Constructors" on page 150 for further details.

When DNEW is executed with a 2-item argument, the appropriate monadic Constructor is called with the second item of the DNEW argument.

The niladic (default) Constructor is called when DNEW is executed with a 1-item argument, a Class reference alone, or whenever APL needs to create a fill item for the Class.

Note that [NEW first creates a new instance of the specified Class, and then executes the Constructor inside the instance.

Example

The DomesticParrot Class defines a Constructor function egg that initialises the Instance by storing its name (supplied as the $2^{\text {nd }}$ item of the argument to पNEW) in a Public Field called Name.

```
:Class DomesticParrot:Parrot
    :Field Public Name
    \nabla egg name
        :Implements Constructor
        :Access Public
        Name\leftarrowname
    \nabla
:EndClass ค DomesticParrot
```

 pol- पNEW DomesticParrot 'Polly'
 pol.Name
 Polly

Constructor Overloading

NameList header syntax is used to define different versions of a Constructor each with a different number of parameters, referred to as its signature. See"Namelists" on page 68 for details. The Clover Class illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor argument with the signature of each of the Constructors that are defined. If a constructor with the same number of arguments exists (remembering that 0 arguments will match a niladic Constructor), it is called. If there is no exact match, and there is a Constructor with a general signature (an un-parenthesised right argument), it is called. If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.
A Constructor function may not call another Constructor function and a constructor function may not be called directly from outside the Class. The only way a Constructor function may be invoked is by DNEW. See "Base Constructors" on page 150 for further details.

In the Clover Class example Class, the following Constructors are defined:

| Constructor | Implied argument |
| :--- | :--- |
| Make1 | 1-item vector |
| Make2 | 2-item vector |
| Make3 | 3-item vector |
| Make0 | No argument |
| MakeAny | Any array accepted |

Clover Class Example

```
:Class Clover & Constructor Overload Example
    :Field Public Con
    \nabla Make0
        :Access Public
        :Implements Constructor
        make O
    \nabla
    \nabla Make1(arg)
        :Access Public
        :Implements Constructor
        make arg
    \nabla
    \nabla Make2(arg1 arg2)
        :Access Public
        :Implements Constructor
        make arg1 arg2
    \nabla
    \nabla Make3(arg1 arg2 arg3)
        :Access Public
        :Implements Constructor
        make arg1 arg2 arg3
    \nabla
    \nabla MakeAny args
        :Access Public
        :Implements Constructor
        make args
    \nabla
    \nabla make args
        Con*(\rhoargs)(2د\squareSI)args
    \nabla
:EndClass a Clover
```

In the following examples, the Make function (see Clover Class for details) displays:

```
<shape of argument> <name of Constructor
called><argument>
(see function make)
```

Creating a new Instance of Clover with a 1 -element vector as the Constructor argument, causes the system to choose the Make 1 Constructor. Note that, although the argument to Make1 is a 1 -element vector, this is disclosed as the list of arguments is unpacked into the (single) variable arg1.

```
    (DNEW Clover(,1)).Con
Make1 1
```

Creating a new Instance of Clover with a 2 - or 3-element vector as the Constructor argument causes the system to choose Make2, or Make3 respectively.

```
    (\squareNEW Clover(1 2)).Con
2 Make2 1 2
    (\squareNEW Clover(1 2 3)).Con
3 Make3 1 2 3
```

Creating an Instance with any other Constructor argument causes the system to choose MakeAny.

```
    (DNEW Clover(r10)).Con
10 MakeAny 1 2 3 4 5 6 7 8 9 10
    (DNEW Clover(2 2p\imath4)).Con
```

22 MakeAny $\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$

Note that a scalar argument will call MakeAny and not Make1.
(ZNEW Clover 1). Con
MakeAny 1
and finally, creating an Instance without a Constructor argument causes the system to choose Make O.

```
(DNEW Clover).Con
Make0 0
```


Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors. The niladic Constructor acts as the default Constructor that is used when DNEW is invoked without arguments and when APL needs a fill item.

```
:Class Bird
    :Field Public Species
    \nabla egg spec
        :Access Public Instance
        :Implements Constructor
        Species*spec
    \nabla
    \nabla default
        :Access Public Instance
        :Implements Constructor
        Species*'Default Bird'
    \nabla
    R R-Speak
        :Access Public
        R\leftarrow'Tweet, tweet!'
    \nabla
:EndClass A Bird
```

The niladic Constructor (in this example, the function default) is invoked when ZNEW is called without Constructor arguments. In this case, the Instance created is no different to one created by the monadic Constructor egg, except that the value of the Species Field is set to 'Default Bird'.

Birdy-DNEW Bird
Birdy.Species
Default Bird
The niladic Constructor is also used when APL needs to make a fill item of the Class. For example, in the expression ($3 \uparrow \mathrm{Bi} \mathrm{rdy}$), APL has to create two fill items of Birdy (one for each of the elements required to pad the array to length 3) and will in fact call the niladic Constructor twice.

In the following statement:

$$
\text { TweetyPie } \leftarrow 3>10 \uparrow \text { Birdy }
$$

The $10 \uparrow$ (temporarily) creates a 10 -element array comprising the single entity Birdy padded with 9 fill-elements of Class Bird. To obtain the 9 fill-elements, APL calls the niladic Constructor 9 times, one for each separate prototypical Instance that it is required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following example.

```
:Class Cheese
    :Field Public Name<''
    :Field Public Strength**
    \nabla make2(name strength)
        :Access Public
        :Implements Constructor
        Name Strength*name strength
    \nabla
    \nabla make1 name
        :Access Public
        :Implements Constructor
        Name Strength\leftarrowname 1
    \nabla
    \nabla make_excuse
        :Access Public
        :Implements Constructor
        \square<'The cat ate the last one!'
    \nabla
:EndClass
```

We might create an array of Instances of the Cheese Class as follows:

```
cdata\leftarrow('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<{DNEW Cheese \omega}'cdata
```

Suppose we want a range of medium-strength cheese for our cheese board.

```
    board\leftarrow(cheeses.Strength<3)/cheeses
    board.Name
Caephilly Mild Cheddar
```

But look what happens when we try to select really strong cheese:

```
    board\leftarrow(cheeses.Strength>5)/cheeses
    board.Name
The cat ate the last one!
```

Note that this message is not the result of the expression, but was explicitly displayed by the make_excuse function. The clue to this behaviour is the shape of board; it is empty!
pboard
0
When a reference is made to an empty array of Instances (strictly speaking, a reference that requires a prototype), APL creates a new Instance by calling the niladic (default) Constructor, uses the new Instance to satisfy the reference, and then discards it. Hence, in this example, the reference:
board. Name
caused APL to run the niladic Constructor make_excuse, which displayed:
The cat ate the last one!
Notice that the behaviour of empty arrays of Instances is modelled VERY closely after the behaviour of empty arrays in general. In particular, the Class designer is given the task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty arrays, a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance belongs.
2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:

- if it is a reference is to a Field, the value of the Field is obtained
- if it is a reference is to a Property, the PropertyGet function is run
- if it is a reference is to a Method, the method is executed
- if it is an assignment, the assignment is performed or the PropertySet function is run

4. if it is a reference, the result of step 3 is used to generate an empty result array with a suitable prototype by the application of the function $\{0 \rho \subset \omega\}$ to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

Example

```
:Class Bird
    :Field Public Species
    \nabla egg spec
        :Access Public Instance
        :Implements Constructor
        \squareDF Species*spec
    \nabla
    \nabla default
        :Access Public Instance
        :Implements Constructor
        ZDF Species*'Default Bird'
        #.DISPLAY Species
    \nabla
    \nabla R&Speak
        :Access Public
        #.DISPLAY R*'Tweet, Tweet, Tweet'
    \nabla
:EndClass ^ Bird
```

First, we can create an empty array of Instances of Bird using 0ρ.

$$
\text { Empty }+0 \rho \square N E W \text { Bird 'Robin' }
$$

A reference to Empty.Species causes APL to create a new Instance and invoke the niladic Constructor default. This function sets Species to 'Default Bird'and calls \#. DISPLAY which displays output to the Session.

```
    DISPLAY Empty.Species
|Default Birdi
```

APL then retrieves the value of Species ('Default Bird'), applies the function $\{0 \rho \subset \omega\}$ to it and returns this as the result of the expression.

A reference to Empty. Speak causes APL to create a new Instance and invoke the niladic Constructor default. This function sets Species to 'Default Bird'and calls \#.DISPLAY which displays output to the Session.

```
    DISPLAY Empty.Speak
.->------------
| Default Bird|
```

APL then invokes function Speak which displays 'Tweet, Tweet, Tweet' and returns this as the result of the function.

```
.\vec{--------------------}.
|Tweet, Tweet, Tweet|
```

APL then applies the function $\{0 \rho \subset \omega\}$ to it and returns this as the result of the expression.

Base Constructors

Constructors in a Class hierarchy are not inherited in the same way as other members. However, there is a mechanism for all the Classes in the Class inheritance tree to participate in the initialisation of an Instance.

Every Constructor function contains a:Implements Constructor statement which may appear anywhere in the function body. The statement may optionally be followed by the : B ase control word and an arbitrary expression.

The statement:

```
:Implements Constructor :Base expr
```

calls a monadic Constructor in the Base Class. The choice of Constructor depends upon the rank and shape of the result of expr (see "Constructor Overloading" on page 143 for details).

Whereas, the statement:

> :Implements Constructor
or

```
:Implements Constructor :Base
```

calls the niladic Constructor in the Base Class.

Note that during the instantiation of an Instance, these calls potentially take place in every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it implies that that Class cannot be instantiated without Constructor arguments. Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails with a LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a fill item or process a reference to an empty array for such a Class or any Class that is based upon it.

A Constructor function may not call another Constructor function and a constructor function may not be called directly from outside the Class or Instance. The only way a Constructor function may be invoked is by ZNEW . The fundamental reason for these restrictions is that there must be one and only one call on the Base Constructor when a new Instance is instantiated. If Constructor functions were allowed to call one another, there would be several calls on the Base Constructor. Similarly, if a Constructor could be called directly it would potentially duplicate the Base Constructor call.

Niladic Example

In the following example, DomesticParrot is derived from Parrot which is derived from Bird. They all share the Field Desc (inherited from Bird). Each of the 3 Classes has its own niladic Constructor called egg0.

```
:Class Bird
    :Field Public Desc
    \nabla egg0
            :Access Public
            :Implements Constructor
            Desc\leftarrow'Bird'
        \nabla
:EndClass ^ Bird
:Class Parrot: Bird
    | egg0
        :Access Public
        :Implements Constructor
        Desc,*'->Parrot'
        \nabla
:EndClass \rho Parrot
:Class DomesticParrot: Parrot
    | egg0
        :Access Public
        :Implements Constructor
        Desc,}\mp@subsup{\leftarrow}{}{\prime}->\mathrm{ DomesticParrot'
        \nabla
:EndClass ค DomesticParrot
    (DNEW DomesticParrot).Desc
Bird->Parrot->DomesticParrot
```


Explanation

UNEW creates the new instance and runs the niladic Constructor DomesticParrot.egg0. As soon as the line:

```
:Implements Constructor
```

is encountered, DNEW calls the niladic constructor in the Base Class Parrot.egg0
Parrot.egg0 starts to execute and as soon as the line:
:Implements Constructor
is encountered, ZNEW calls the niladic constructor in the Base Class Bird.egg0.

When the line:

:Implements Constructor

is encountered, पNEW cannot call the niladic constructor in the Base Class (there is none) so the chain of Constructors ends. Then, as the State Indicator unwinds ...

| Bird.egg0 | executes | Desc \leftarrow^{\prime} Bird'' |
| :--- | :--- | :--- |
| Parrot.egg0 | executes | Desc,$\leftarrow^{\prime} \rightarrow$ Parrot'' |
| DomesticParrot.egg0 | execute | Desc,$\leftarrow^{\prime} \rightarrow$ DomesticParrot' ' |

Monadic Example

In the following example, DomesticParrot is derived from Parrot which is derived from Bird. They all share the Field Species (inherited from Bird) but only a DomesticParrot has a Field Name. Each of the 3 Classes has its own Constructor called egg.

```
:Class Bird
    :Field Public Species
    \nabla egg spec
        :Access Public Instance
        :Implements Constructor
        Species*spec
    \nabla
:EndClass a Bird
:Class Parrot: Bird
    \nabla egg species
        :Access Public Instance
        :Implements Constructor :Base 'Parrot: ',species
    \nabla
    ...
:EndClass ค Parrot
:Class DomesticParrot: Parrot
    :Field Public Name
    \nablaegg(name species)
        :Access Public Instance
        :Implements Constructor :Base species
        ZDF Name\leftarrowname
    \nabla
:EndClass ค DomesticParrot
```

```
    pol-\NEW DomesticParrot('Polly' 'Scarlet Macaw')
    pol.Name
Polly
    pol.Species
Parrot: Scarlet Macaw
```


Explanation

DNEW creates the new instance and runs the Constructor DomesticParrot.egg. The egg header splits the argument into two items name and species. As soon as the line:

```
:Implements Constructor :Base species
```

is encountered, ZNEW calls the Base Class constructor Parrot.egg, passing it the result of the expression to the right, which in this case is simply the value in species.

Parrot.egg starts to execute and as soon as the line:

```
:Implements Constructor :Base 'Parrot: ',species
```

is encountered, पNEW calls its Base Class constructor Bird.egg, passing it the result of the expression to the right, which in this case is the character vector 'Parrot: ' catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species.
At this point, the State Indicator would be:
) SI
[\#.[Instance of DomesticParrot]] \#.Bird.egg[3]* [constructor]
: base
[\#.[Instance of DomesticParrot]] \#.Parrot.egg[2] [constructor]
:base
[\#.[Instance of DomesticParrot]] \#.DomesticParrot.egg[2] [constructor]

Bird.egg then returns to Parrot.egg which returns to
DomesticParrot.egg.
Finally, DomesticParrot.egg[3] is executed, which establishes Field Name and the Display Format ([DF) for the instance.

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to exist and is typically used to close files or release external resources associated with an Instance.

An Instance of a Class is destroyed when:

- The Instance is expunged using DEX or) ERASE.
- A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

- The Instance is re-assigned (see below)
- The result of DNEW is not assigned (the instance gets created then immediately destroyed).
- APL creates (and then destroys) a new Instance as a result of a reference to a member of an empty Instance. The destructor is called after APL has obtained the appropriate value from the instance and no longer needs it.
- The constructor function fails. Note that the Instance is actually created before the constructor is run (inside it), and if the constructor fails, the fledgling Instance is discarded. Note too that this means a destructor may need to deal with a partially constructed instance, so the code may need to check that resources were actually acquired, before releasing them.
- On the execution of)CLEAR,) LOAD, (LOAD,)OFF or DOFF.

Note that an Instance of a Class only disappears when the last reference to it disappears. For example, the sequence:

```
I1&DNEW MyClass
I2*I1
)ERASE I1
```

will not cause the Instance of MyCl ass to disappear because it is still referenced by I2.

A Destructor is identified by the statement : Implements Destructor which must appear immediately after the function header in the Class script.

```
:Class Parrot
    ...
    \nabla kill
        :Implements Destructor
        'This Parrot is dead'
    \nabla
:EndClass ค Parrot
```

```
    pol-पNEW Parrot 'Scarlet Macaw'
    )ERASE pol
This Parrot is dead
```

Note that reassignment to pol causes the Instance referenced by pol to be destroyed and the Destructor invoked:

```
    pol*-पNEW Parrot 'Scarlet Macaw'
    pol-पNEW Parrot 'Scarlet Macaw'
This Parrot is dead
```

If a Class inherits from another Class, the Destructor in its Base Class is automatically called after the Destructor in the Class itself.

So, if we have a Class structure:

```
DomesticParrot => Parrot => Bird
```

containing the following Destructors:

```
:Class DomesticParrot: Parrot
    * .-
    \nablakill
        :Implements Destructor
        'This ',(कृTHIS),' is dead'
    \nabla
:EndClass ค DomesticParrot
:Class Parrot: Bird
    ...
    \nabla kill
        :Implements Destructor
        'This Parrot is dead'
    \nabla
:EndClass a Parrot
:Class Bird
    ...
    \nabla kill
        :Implements Destructor
        'This Bird is dead'
    \nabla
:EndClass a Bird
```

Destroying an Instance of DomesticParrot will run the Destructors in DomesticParrot, Parrot and Bird and in that order.

pol* \square NEW DomesticParrot

) CLEAR
This Polly is dead
This Parrot is dead
This Bird is dead clear ws

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together as Members) which are defined within the body of the Class script or are inherited from other Classes.

Methods are regular APL defined functions, but with some special characteristics that control how they are called and where they are executed. D-fns may not be used as Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to set the Field value, you assign to its name, and the Field value is stored in the Field. However, Fields differ from variables in that they possess characteristics that control their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its name; to set the Property value, you assign to its name. However, Property values are actually accessed via PropertyGet and PropertySet functions that may perform all sorts of operations. In particular, the value of a Property is not stored in the Property and may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or Shared.

Public members are visible from outside the Class and Instances of the Class, whereas Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared Members are common to all Instances and Shared Members may be referenced directly on the Class itself.

Fields

A Field behaves just like an APL variable.
To get the value of a Field, you reference its name; to set the value of a Field, you assign to its name. Conceptually, the Field value is stored in the Field. However, Fields differ from variables in that they possess characteristics that control their accessibility.

A Field may be declared anywhere in a Class script by a : Field statement. This specifies:

- the name of the Field
- whether the Field is Public or Private
- whether the Field is Instance or Shared
- whether or not the Field is ReadOnly
- optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See "Trigger Fields" on page 163 for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the default is Private.

Class DomesticParrot has a Name Field which is defined to be Public and Instance (by default).

```
:Class DomesticParrot: Parrot
        :Field Public Name
    \nabla egg nm
        :Access Public
        :Implements Constructor
        Name}\leftarrown
    \nabla
:EndClass ค DomesticParrot
```

The Name field is initialised by the Class constructor.

```
    pet<\squareNEW DomesticParrot'Polly'
    pet.Name
Polly
```

The Name field may also be modified directly:

```
pet.Name+\phipet.Name
pet.Name
```

ylloP

Initialising Fields

A Field may be assigned an initial value. This can be specified by an arbitrary expression that is executed when the Class is fixed by the Editor or by DFIX.

```
:Class DomesticParrot: Parrot
    :Field Public Name\leftarrow'Dicky'
            :Field Public Talks&1
    \nabla egg nm
        :Access Public
        :Implements Constructor
        Name}\leftarrown
    \nabla
:EndClass \rho DomesticParrot
```

Field Talks will be initialised to 1 in every instance of the Class.

```
        pet-पNEW DomesticParrot 'Dicky'
        pet.Talks
1
        pet.Name
Dicky
```

Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.
See also: "Shared Fields" on page 162.

Private Fields

A Private Field may only be referenced by code running inside the Class or an Instance of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 175) has a Private Instance Field named tie that is used to store the file tie number in each Instance of the Class.

```
:Class ComponentFile
        :Field Private Instance tie
    \nabla Open filename
        :Implements Constructor
        :Access Public Instance
        :Trap 0
            tie+filename DFTIE O
        :Else
            tie\leftarrowfilename DFCREATE 0
        :EndTrap
        ODF filename,'(Component File)'
    \nabla
```

As the field is declared to be Private, it is not accessible from outside an Instance of the Class, but is only visible to code running inside.

```
    F1-\squareNEW ComponentFile 'test1'
        F1.tie
    F1.tie
    ^
```

VALUE ERROR

Shared Fields

If a Field is declared to be Shared, it has the same value for every Instance of the Class. Moreover, the Field may be accessed from the Class itself; an Instance is not required.

The following example establishes a Shared Field called Months that contains abbreviated month names which are appropriate for the user's current International settings. It also shows that an arbitrarily complex statement may be used to initialise a Field.

```
:Class Example
    :Using System.Globalization
    :Field Public Shared ReadOnly Months <12^([NEW
DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass & Example
```

A Shared Field is not only accessible from an instance...

```
        EG*DNEW Example
        EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...
```

... but also, directly from the Class itself.

```
    Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...
```

Notice that in this case it is necessary to insert a : Using statement (or the equivalent assignment to DUSING) in order to specify the .Net search path for the DateTimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the Session:

```
    ZUSING*'System.Globalization'
    12^(DNEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...
```


Trigger Fields

A field may act as a Trigger so that a function may be invoked whenever the value of the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the value of a certain Field. Naturally, when the Field changes, it is desirable to change the Display Form. This can be achieved by making the Field a Trigger as illustrated by the following example.

Notice that the Trigger function is invoked both by assignments made within the Class (as in the assignment in ctor) and those made from outside the Instance.

```
:Class MyClass
    :Field Public Name
    :Field Public Country\leftarrow'England'
    \nabla ctor nm
            :Access Public
            :Implements Constructor
            Name\leftarrownm
        \nabla
        \nabla format
            :Implements Trigger Name,Country
            \squareDF'My name is ',Name,' and I live in ',Country
        \nabla
:EndClass ค MyClass
            me*-पNEW MyClass 'Pete'
            me
My name is Pete and I live in England
    me.Country\leftarrow'Greece'
    me
My name is Pete and I live in Greece
    me.Name\leftarrow'Kostas'
    me
My name is Kostas and I live in Greece
```


Methods

Methods are implemented as regular defined functions, but with some special attributes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A Method begins with a line that contains a ∇, followed by a valid APL defined function header. The method definition is terminated by a closing ∇.

The behaviour of a Method is defined by an : Access control statement.

Public or Private

Methods may be defined to be Private (the default) or Public.
A Private method may only be invoked by another function that is running inside the Class namespace or inside an Instance namespace. The name of a Private method is not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared

Methods may be defined to be Instance (the default) or Shared.
An Instance method runs in the Instance namespace and may only be called via the instance itself. An Instance method has direct access to Fields and Properties, both Private and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or via the Class. However, a Shared method that is called via an Instance does not have direct access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to provide general services for all Instances that are not Instance specific.

Overridable Methods

Instance Methods may be declared with : Access Overridable.
A Method declared as being Overridable is replaced in situ (i.e. within its own Class) by a Method of the same name that is defined in a higher Class which itself is declared with the Override keyword. See "Superseding Base Class Methods" on page 167.

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or via the Class. However, a Shared method that is called via an Instance does not have direct access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the current Instance, so may be declared as Shared.

```
:Class Parrot:Bird
    R+Speak times
        :Access Public Shared
        R\leftarrowकtimespc'Squark!'
    \nabla
:EndClass ค Parrot
    wild-\squareNEW Parrot
    wild.Speak 2
Squark! Squark!
```

Note that Parrot. Speak may be executed directly from the Class and does not in fact require an Instance.

```
    Parrot.Speak 3
Squark! Squark! Squark!
```


Instance Methods

An Instance method runs in the Instance namespace and may only be called via the instance itself. An Instance method has direct access to Fields and Properties, both Private and Public, in the Instance in which it runs.

Class DomesticParrot has a Speak method defined to be Public and Instance. Where Speak refers to Name, it obtains the value of Name in the current Instance.

```
Note too that DomesticParrot.Speak supersedes the inherited
Parrot.Speak.
:Class DomesticParrot: Parrot
    :Field Public Name
    \nabla egg nm
        :Access Public
        :Implements Constructor
        Name}\leftarrown
    \nabla
    R*Speak times
        :Access Public Instance
        R&cName,', ',Name
        R\leftarrow\uparrowR,timespc' Who''s a pretty boy, then!'
    \nabla
:EndClass \rho DomesticParrot
    pet-\squareNEW DomesticParrot'Polly'
    pet.Speak 3
Polly, Polly
    Who's a pretty boy, then!
    Who's a pretty boy, then!
    Who's a pretty boy, then!
        bil-पNEW DomesticParrot'Billy'
        bil.Speak 1
Billy, Billy
    Who's a pretty boy, then!
```


Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same name that is defined in its Base Class, but only for calls made from above or within the higher Class itself (or an Instance of the higher Class). The base method remains available in the Base Class and is invoked by a reference to it from within the Base Class. This behaviour can be altered using the Overridable and Override key words in the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class which derives from the Class with the Overridable method to supersede the Base Class method in the Base Class, by providing a method which is marked Override. The typical use of this is to replace code in the Base Class which handles an event, with a method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs in the base class:

```
\nabla ErrorHandler
[1] :Access Public Overridable
[2] D\leftarrowヶ\DM
\nabla
```

In your derived class, you might supersede this by a more sophisticated error handler, which logs the error to a file:

```
    \nabla ErrorHandler;TN
[1] :Access Public Override
[2] D-个ПDM
[3] TN&'ErrorLog'DFSTIE O
[4] पDM DFAPPEND TN
[5] DFUNTIE TN
\nabla
```

If the derived class had a function which was not marked Override, then function in the derived class which called ErrorHandler would call the function as defined in the derived class, but if a function in the base class called ErrorHandler, it would still see the base class version of this function. With Override specified, the new function supersedes the function as seen by code in the base class. Note that different derived classes can specify different Overrides.

In C\#, Java and some other compiled languages, the term Virtual is used in place of Overridable, which is the term used by Visual Basic and Dyalog APL.

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the value of a Property, you simply reference its name. To change the value of a Property, you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its value is changed via a PropertySet function. Furthermore, Properties may be defined to allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.
A Simple Property is one whose value is accessed (by APL) in its entirety and reassigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever partially accessed and set (one element at a time) via indices. The Numbered Property is designed to allow APL to perform selections and structural operations on the Property.

A Keyed Property is similar to a Numbered Property except that its elements are accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Properties.

If Instance My Inst has a Simple Property Sprop and a Numbered Property Nprop, the expressions

$$
\begin{aligned}
& \text { X }- \text { MyInst.SProp } \\
& \text { X }- \text { MyInst.SProp[2] }
\end{aligned}
$$

both cause APL to call the PropertyGet function to retrieve the entire value of Sprop. The second statement subsequently uses indexing to extract just the second element of the value.

Whereas, the expression:
X-MyInst.NProp[2]
causes APL to call the PropertyGet function with an additional argument which specifies that only the second element of the Property is required. Moreover, the expression:
X<MyInst.NProp
causes APL to call the PropertyGet function successively, for every element of the Property.

A Property is defined by a : Property ... : EndProperty section in a Class Script.

Within the body of a Property Section there may be:

- one or more : Access statements which must appear first in the body of the Property.
- a single PropertyGet function.
- a single PropertySet function
- a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety and re-assigned (by APL) in its entirety. The following examples are taken from the ComponentFile Class (see page 175).

The Simple Property Count returns the number of components on a file.

```
:Property Count
:Access Public Instance
    r
        r`-1+2つ\squareFSIZE tie
    \nabla
:EndProperty ค Count
    F1-DNEW ComponentFile 'test1'
    F1.Append'Hello World'
    F1.Count
    F1.Append 42
    F1.Count
```

1
1
2
2

Because there is no set function defined, the Property is read-only and attempting to change it causes SYNTAX ERROR.

F1. Count $\leftarrow 99$
SYNTAX ERROR

```
    F1.Count*99
```

 \(\wedge\)
 The Access Property has both get and set functions which are used, in this simple example, to get and set the component file access matrix.

```
:Property Access
:Access Public Instance
    \nabla r\leftarrowget
        r<\squareFRDAC tie
    \nabla
    \nabla set am;mat;OK
        mat\leftarrowam.NewValue
        :Trap 0
```



```
        :Else
            OK}\leftarrow
        :EndTrap
        'bad arg'口SIGNAL(~OK)/11
        mat DFSTAC tie
    \nabla
:EndProperty A Access
```

Note that the set function must be monadic. Its argument, supplied by APL, will be an Instance of Property Arguments. This is an internal Class whose NewValue field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been assigned. The function may validate the value reject or accept it (as in this example), or perform whatever processing is appropriate.

```
    F1-DNEW ComponentFile 'test1'
    \rhoF1.Access
O 3
        F1.Access\leftarrow3 3p28 2105 16385 0 2073 16385 31 -1 0
        F1.Access
28 2105 16385
    0 2073 16385
31 -1 0
    F1.Access*'junk'
bad arg
        F1.Access\leftarrow'junk'
    ^
        F1.Access\leftarrow1 2\rho10
bad arg
    F1.Access\leftarrow1 2010
    ^
```


Simple Shared Properties

The ComponentFile Class (see page 175) specifies a Simple Shared Property named Files which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also possible to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as a whole, and which is not specific to any a particular Instance.

```
:Property Files
:Access Public Shared
    \nabla r*get
        r-DFLIB''
    \nabla
:EndProperty
```

Note that CFLIB (invoked by the Files get function) does not report the names of tied files.

```
    F1-DNEW ComponentFile 'test1'
    OEX'F1'
    F2+\squareNEW ComponentFile 'test2'
    F2.Files a NB DFLIB does not report tied files
test1
    OEX'F2'
```

Note that a Shared Property may be accessed from the Class itself. It is not necessary to create an Instance first.

ComponentFile.Files
test 1
test2

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only ever partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL first calls its PropertyShape function which returns the dimensions of the Property. Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the bounds of these dimensions, and then calls the PropertyGet or PropertySet function. If the expression specifies a single index, APL calls the PropertyGet or PropertySet function once. If the expression specifies multiple indices, APL calls the function successively.

If the expression references or assigns the entire Property (without indexing) APL generates a set of indices for every element of the Property and calls the PropertyGet or PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of elements or an INDEX ERROR if an index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an argument of type Property Arguments.

Example

The ComponentFile Class (see page 175) specifies a Numbered Property named Component which represents the contents of a specified component on the file.

```
:Property Numbered Component
:Access Public Instance
    |
        r*-1+2>\squarefSIZE tie
    \nabla
    \nabla r<get arg
        r*DFREAD tie arg.Indexers
    \nabla
    \nabla set arg
        arg.NewValue GFREPLACE tie,arg.Indexers
    \nabla
:EndProperty
```

```
    F1-DNEW ComponentFile 'test1'
    F1.Append"(\imath5)\timesc\imath4
12345
5
    F1.Count
    F1.Component[4]
4 8 12 16
    4>F1.Component
4 12 16
    (c4 3)DF1.Component
4 8 12 16 3 6 9 12
```

Referencing a Numbered Property in its entirety causes APL to call the get function successively for every element.

```
    F1.Component
1 2 3 4 2 4 6 8 8 3 6 9
    ((c4 3)]F1.Component)\leftarrow'Hello' 'World'
    F1.Component[3]
World
```

Attempting to access a Numbered Property with inappropriate indices generates an error:

F1. Component[6]
INDEX ERROR
, F1.Component[6]
F1.Component[1;2]
RANK ERROR
F1.Component[1;2]

The Default Property

A single Numbered Property may be identified as the Default Property for the Class. If a Class has a Default Property, indexing with the $]$ primitive function and [. . .] indexing may be applied to the Property directly via a reference to the Class or Instance.

The Numbered Property example of the ComponentFile Class(see page 175) can be extended by adding the control word Default to the: Property statement for the Component Property.

Indexing may now be applied directly to the Instance F1. In essence, F1 [n] is simply shorthand for $F 1$. Component $[n]$ and $n[F 1$ is shorthand for n]F1. Component
: Property Numbered Default Component
:Access Public Instance
∇r shape
$r \leftarrow^{-} 1+2 \supset \square f$ SIZE tie
∇
$\nabla r+g e t$ arg
$r-\square F R E A D$ tie arg.Indexers
∇
∇ set arg
arg. NewValue DFREPLACE tie,arg.Indexers
∇
: EndProperty
F1- पNEW ComponentFile 'test1'
F1.Append" $(\imath 5) \times \subset$) 4
12345
F1.Count
5
F1[4]
481216
(c4 3) DF1
$\begin{array}{llllllll}4 & 8 & 12 & 16 & 3 & 6 & 9 & 12\end{array}$
((c4 3) DF1)↔'Hello' 'World'
F1[3]
World
Note however that this feature applies only to indexing.

```
    4วF1
DOMAIN ERROR
    4วF1
    ^
```


ComponentFile Class

```
:Class ComponentFile
        :Field Private Instance tie
    \nabla Open filename
        :Implements Constructor
        :Access Public Instance
        :Trap 0
            tie+filename DfTIE 0
        :Else
            tie\leftarrowfilename DFCREATE O
        :EndTrap
        UDF filename,'(Component File)'
    \nabla
\nablaClose
            :Access Public Instance
            DFUNTIE tie
\nabla
    r r Append data
        :Access Public Instance
        r+data DFAPPEND tie
\nabla
    \nabla Replace(comp data)
        :Access Public Instance
        data CFREPLACE tie,comp
    \nabla
    :Property Count
    :Access Public Instance
        | r*get
            r*-1+2د\squarefSIZE tie
        \nabla
    :EndProperty ค Count
```


Component File Class Example (continued)

```
:Property Access
    :Access Public Instance
        \nabla r*get arg
            r-DFRDAC tie
        \nabla
        \nabla set am;mat;OK
            mat+am.NewValue
            :Trap 0
                    OK\leftarrow(2=\rho\rhomat )^(3=2 د\rhomat )^^/, mat=Lmat
            :Else
                    OK+0
            :EndTrap
            'bad arg'पSIGNAL(~OK)/11
            mat DFSTAC tie
        \nabla
    :EndProperty ค Access
    :Property Files
    :Access Public Shared
        r r*get
        r<\squareFLIB''
        \nabla
    :EndProperty
    :Property Numbered Default Component
    :Access Public Instance
        |}r\mathrm{ <shape args
            r*-1+2-\squareFSIZE tie
        \nabla
        \nabla r*get arg
            r*c\squareFREAD tie,arg.Indexers
            \nabla
            \nabla set arg
                (>arg.NewValue)DFREPLACE tie,arg.Indexers
            \nabla
    :EndProperty
    \nabla Delete file;tie
        :Access Public Shared
        tie\leftarrowfile DFTIE 0
        file DFERASE tie
    \nabla
:EndClass \rho Class ComponentFile
```


Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be accessed by indexing (so-called square-bracket indexing) and indices are not restricted to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/or a set function are required. APL does not attempt to validate or resolve the specified indices in any way, so does not require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the rank and lengths of the array to the right of the assignment (for an indexed assignment) and the array returned by the get function (for an indexed reference). If the rank or shape of these arrays fails to conform to the rank or shape of the indices, APL will issue a RANK ERROR or LENGTH ERROR.

Note too that indices may not be elided. If KProp is a Keyed Property of Instance I1, the following expressions would all generate NONCE ERROR.

```
I1.KProp
I1. KProp[]+10
I1.KProp[;]+10
I1.KProp['One' 'Two';]<10
I1.KProp[;'One' 'Two']+10
```

When APL calls a monadic get or a set function, it supplies an argument of type Property Arguments.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.
Sparse2 represents a 2-dimensional sparse array each of whose dimensions are indexed by arbitrary character keys. The sparse array is implemented as a Keyed Property named V alues. The following expressions show how it might be used.

SA1*- NNEW Sparse2
SA1.Values[c'Widgets';c'Jan'] +100
SA1.Values[c'Widgets';c'Jan']
100
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar'
'Oct']+10×2 3pr6
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
102030
405060
SA1.Values[c'Widgets';'Jan' 'Oct']
1030
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30
Sparse2 Class Example

```
:Class Sparse2 A 2D Sparse Array
    :Field Private keys
    :Field Private values
    \nabla make
        :Access Public
        :Implements Constructor
        keys+0pc'' ''
        values*0
    \nabla
    :Property Keyed Values
    :Access Public Instance
            \nabla v*get arg;k
                k<arg.Indexers
                ZSIGNAL(2\not=pk)/4
                k\leftarrowfixkeys k
                v\leftarrow(values,0)[keyszk]
            \nabla
            \nabla set arg;new;k;v;n
                    v*arg.NewValue
                    k*arg.Indexers
                    ZSIGNAL(2\not=pk)/4
                        k<fixkeys k
                    v\leftarrow(\rhok)(\rho\ddot{*}(~1=\rho,v))v
                    OSIGNAL((\rhok)\not=\rhov)/5
                        k v\leftarrow,"k v
                    :If v/new\leftarrow~k\inkeys
                    values,*new/v
                    keys,*new/k
                        k v/\ddot{~}+c~new
            :EndIf
            :If 0<pk
                    values[keysık]*v
            :EndIf
        \nabla
    :EndProperty
    k<fixkeys k
        k\leftarrow(2\not=\equiv"k){,(c\ddot{*}\alpha)\omega}`"k
        k<u(o.{د,/c`\alpha\alpha \omega})/k
    \nabla
:EndClass ^ 2D Sparse Array
```

Internally, Sparse 2 maintains a list of keys and a list of values which are initialised to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys (indices) in arg. Indexer and values in arg. NewValue. The function updates the values of existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices) in arg. Indexer. The function uses these keys to retrieve the corresponding values, inserting 0 s for non-existent keys.

Note that in the expression:
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
the structure of arg. Indexer is:

Example

A second example of a Keyed Property is provided by the KeyedFile Class which is based upon the ComponentFile Class (see page 175) used previously.

```
:Class KeyedFile: ComponentFile
    :Field Public Keys
    \squareML↔0
    \nabla Open filename
        :Implements Constructor :Base filename
        :Access Public Instance
        :If Count>0
            Keys}\leftarrow{\mp@code{\omega~\squareBASE.Component}*`\imathCount
        :Else
            Keys+0pc''
        :EndIf
    \nabla
    :Property Keyed Component
    :Access Public Instance
        \nabla r*get arg;keys;sink
            keys*arg.Indexers
            ZSIGNAL(~^/keys\inKeys)/3
            r}{2~\omegaכ\squareBASE.Component}"Keyszkey
        \nabla
        \nabla set arg;new;keys;vals
            vals*arg.NewValue
            keys*arg.Indexers
            ZSIGNAL(( }\rho,\mathrm{ keys) # р,vals)/5
            :If v/new<~Neys\inKeys
                sink\leftarrowAppend" | | \ (cnew)/"*keys vals
                Keys,*new/keys
                keys vals/\ddot{~}<c~new
            :EndIf
            :If 0<p,keys
                Replace" \Ф\uparrow(Keyszkeys)(\downarrowФ\uparrowkeys vals)
            :EndIf
        \nabla
    :EndProperty
:EndClass \rho Class KeyedFile
```

```
    K1<\squareNEW KeyedFile 'ktest'
    K1.Count
0
    K1.Component[c'Pete']}\leftarrow4
    K1.Count
1
    K1.Component['John' 'Geoff']\leftarrow(\imath10)(3 4\rho_12)
    K1.Count
3
    K1.Component['Geoff' 'Pete']
1 2 3 4 42
5
9 10 11 12
    K1.Component['Pete' 'Morten']\leftarrow(3 40'。')(\imath\imath3)
    K1.Count
4
    K1.Component['Morten' 'Pete' 'John']
1
1}2211422%12% 000
```


Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties and/or Methods. These members are only place-holders; they have no specific implementation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents a protocol that an application must follow in order to manipulate a Class in a particular way.

An example might be an Interface called Icompare that provides a single method (Compare) which compares two Instances of a Class, returning a value to indicate which of the two is greater than the other. A Class that implements Icompare must provide an appropriate Compare method, but every Class will have its own individual version of Compare. An application can then be written that sorts Instances of any Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its :Class statement, and defines a corresponding set of the Methods and Properties that are declared in the Interface.

To implement a Method, a function defined in the Class must include a : Implements Method statement that maps it to the corresponding Method defined in the Interface:

```
:Implements Method <InterfaceName.MethodName>
```

Furthermore, the syntax of the function (whether it be result returning, monadic or niladic) must exactly match that of the method described in the Interface. The function name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax (defined by the presence or absence of a PropertyGet and PropertySet functions) must exactly match that of the property described in the Interface. The Property name, however, need not be the same as that described in the Interface.

Penguin Class Example

The Penguin Class example illustrates the use of Interfaces to implement multiple inheritance.

```
:Interface FishBehaviour
\nabla
\nabla
:EndInterface \rho FishBehaviour
:Interface BirdBehaviour
\nabla R\leftarrowFly A Returns description of flying capability
\nabla
\nabla R&Lay & Returns description of egg-laying behaviour
\nabla
R R&Sing a Returns description of bird-song
\nabla
:EndInterface ^ BirdBehaviour
```

```
:Class Penguin: Animal,BirdBehaviour,FishBehaviour
    \nabla R+NoCanFly
        :Implements Method BirdBehaviour.Fly
        R<'Although I am a bird, I cannot fly'
    \nabla
    R R\leftarrowLayOneEgg
        :Implements Method BirdBehaviour.Lay
        R<'I lay one egg every year'
    \nabla
    R+Croak
        :Implements Method BirdBehaviour.Sing
        R\leftarrow'Croak, Croak!'
    \nabla
    \nabla R<Dive
        :Implements Method FishBehaviour.Swim
        R\leftarrow'I can dive and swim like a fish'
    \nabla
:EndClass & Penguin
```

In this case, the Penguin Class derives from Animal but additionally supports the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members from both.

```
    Pingo-DNEW Penguin
    OCLASS Pingo
    #.Penguin #.FishBehaviour #.BirdBehaviour #.Animal
    (FishBehaviour DCLASS Pingo).Swim
I can dive and swim like a fish
    (BirdBehaviour DCLASS Pingo).Fly
Although I am a bird, I cannot fly
    (BirdBehaviour DCLASS Pingo).Lay
I lay one egg every year
    (BirdBehaviour CCLASS Pingo).Sing
Croak, Croak!
```


Including Namespaces in Classes

A Class may import methods from one or more plain Namespaces. This allows several Classes to share a common set of methods, and provides a degree of multiple inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:

```
:Include NS
```

When the Class is fixed by the editor or by DFIX, all the defined functions and operators in Namespace NS are included as methods in the Class. The functions and operators which are brought in as methods from the namespace NS are treated exactly as if the source of each function/operator had been included in the class script at the point of the : Inc lude statement. For example, if a function contains: Signature or : Access statements, these will be taken into account. Note that such declarations have no effect on a function/operator which is in an ordinary namespace.

D-fns and D-ops in NS are also included in the Class but as Private members, because D-fns and D-ops may not contain : Signature or : Access statements. Variables and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty incurred in using this feature. Additions, deletions and changes to the functions in NS are immediately reflected in the Class.

If there is a member in the Class with the same name as a function in NS, the Class member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are inherited from the Base Class, so the precedence is:

Class supersedes
Included Namespace, supersedes

Base Class

Any number of Namespaces may be included in a Class and the : Inc lude statements may occur anywhere in the Class script. However, for the sake of readability, it is recommended that you have : Inc lude statements at the top, given that any definitions in the script will supersede included functions and operators.

Example

In this example, Class Penguin inherits from Animal and includes functions from the plain Namespaces BirdStuff and FishStuff.

```
:Class Penguin: Animal
    :Include BirdStuff
    :Include FishStuff
:EndClass & Penguin
```

Namespace BirdStuff contains 2 functions, both declared as Public methods.

```
:Namespace BirdStuff
    R R Fly
        :Access Public Instance
        R<'Fly, Fly ...'
    \nabla
    \nabla R&Lay
        :Access Public Instance
        R\leftarrow'Lay, Lay ...''
    \nabla
:EndNamespace ค BirdStuff
```

Namespace FishStuff contains a single function, also declared as a Public method.

```
:Namespace FishStuff
    R R+Swim
        :Access Public Instance
        R\leftarrow'Swim, Swim ...'
    \nabla
:EndNamespace ค FishStuff
    Pingo+\squareNEW Penguin
    Pingo.Swim
Swim, Swim ...
    Pingo.Lay
Lay, Lay ...
    Pingo.Fly
Fly, Fly...
```

This is getting silly - we all know that Penguin's can't fly. This problem is simply resolved by overriding the BirdStuff.Fly method with Penguin. Fly. We can hide BirdStuff.Fly with a Private method in Penguin that does nothing. For example:

```
:Class Penguin: Animal
        :Include BirdStuff
    :Include FishStuff
    \nabla Fly \rho Override BirdStuff.Fly
    \nabla
:EndClass ^ Penguin
    Pingo*-DNEW Penguin
        Pingo.Fly
VALUE ERROR
    Pingo.Fly
    ^
```

or we can supersede it with a different Public method, as follows:

```
:Class Penguin: Animal
    :Include BirdStuff
    :Include FishStuff
    \nabla R\leftarrowFly \rho Override BirdStuff.Fly
        :Access Public Instance
        R<'Sadly, I cannot fly'
    \nabla
:EndClass & Penguin
        Pingo*-DNEW Penguin
        Pingo.Fly
Sadly, I cannot fly
```


Nested Classes

It is possible to define Classes within Classes (Nested Classes).
A Nested Class may be either Private or Public. This is specified by a :Access Statement, which must precede the definition of any Class contents. The default is Private.

A Public Nested Class is visible from outside its containing Class and may be used directly in its own right, whereas a Private Nested Class is not and may only be used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested Classes and in that way expose them to the calling environment.

GolfService Example Class

```
:Class GolfService
:Using System
:Field Private GOLFILE\leftarrow'' \rho Name of Golf data file
:Field Private GOLFID<O \rho Tie number Golf data file
:Class GolfCourse
    :Field Public Code*-1
    :Field Public Name«''
    \nabla ctor args
        :Implements Constructor
        :Access Public Instance
        Code Name\leftarrowargs
        UDF Name,'(',(कCode),')'
    \nabla
:EndClass
:Class Slot
    :Field Public Time
    :Field Public Players
    \nabla ctor1 t
        :Implements Constructor
        :Access Public Instance
        Time\leftarrowt
        Players*0\rhoc''
    \nabla
    \nabla ctor2 (t pl)
        :Implements Constructor
        :Access Public Instance
        Time Players\leftarrowt pl
    \nabla
    \nabla format
        :Implements Trigger Players
        ODFकTime Players
    \nabla
:EndClass
```

```
:Class Booking
    :Field Public OK
    :Field Public Course
    :Field Public TeeTime
    :Field Public Message
    \nabla ctor args
        :Implements Constructor
        :Access Public Instance
        OK Course TeeTime Message*args
    \nabla
    format
        :Implements Trigger OK,Message
        \squareDFकCourse TeeTime(っOKфMessage'OK')
    \nabla
:EndClass
:Class StartingSheet
    :Field Public OK
    :Field Public Course
    :Field Public Date
    :Field Public Slots-DNULL
    :Field Public Message
    \nabla ctor args
        :Implements Constructor
        :Access Public Instance
        OK Course Date*args
    \nabla
    format
        :Implements Trigger OK,Message
        UDFक2 1\rho(कCourse Date)(\uparrowक" Slots)
        \nabla
:EndClass
\nabla ctor file
    :Implements Constructor
    :Access Public Instance
    GOLFILE&file
    OFUNTIE(((\downarrowDFNAMES)~' ')\imathcGOLFILE) د\FNUMS,0
    :Trap 22
            GOLFID&GOLFILE DfTIE O
    :Else
            InitFile
    :EndTrap
\nabla
```

```
| dtor
    :Implements Destructor
    \squarefuNTIE GOLFID
\nabla
\nabla InitFile;COURSECODES;COURSES;INDEX;I
    :Access Public
    :If GOLFID\not=0
        GOLFILE DfERASE GOLFID
    :EndIf
    goLfID&GOLFILE DFCREATE O
    COURSECODES&1 2 3
    COURSES\leftarrow'St Andrews' 'Hindhead' 'Basingstoke'
    INDEX\leftarrow(\rhoCOURSES) \rho0
    COURSECODES COURSES INDEX DFAPPEND GOLFID
    :For I :In \imath\rhoCOURSES
            INDEX[I]*0 0 [FAPPEND 1
    :EndFor
    COURSECODES COURSES INDEX Dfreplace golfid 1
\nabla
\nabla R&GetCourses;COURSECODES;COURSES;INDEX
    :Access Public
    COURSECODES COURSES INDEX-\squareFREAD GOLFID 1
    R\leftarrow{DNEW GolfCourse \omega}" }\downarrow\varnothing\uparrowCOURSECODES COURSE
\nabla
```

```
    R R\leftarrowGetStartingSheet
ARGS;CODE; COURSE;DATE;COURSECODES
    ; COURSES;INDEX;COURSEI;IDN
    ;DATES;COMPS;IDATE;TEETIMES
    ;GOLFERS;I;T
    :Access Public
    CODE DATE&ARGS
    COURSECODES COURSES INDEX<\squareFREAD GOLFID 1
    COURSEI&COURSECODES \imathCODE
    COURSE&\squareNEW GolfCourse(CODE(COURSEI`COURSES, c''))
    R&\squareNEW StartingSheet(0 COURSE DATE)
    :If COURSEI>\rhoCOURSECODES
    R.Message\leftarrow'Invalid course code'
    :Return
    :EndIf
    IDN\leftarrow2 पNQ'.' 'DateToIDN',DATE.(Year Month Day)
    DATES COMPS&\squareFREAD GOLFID,COURSEIっINDEX
    IDATE\leftarrowDATESIIDN
    :If IDATE>\rhoDATES
    R.Message}\leftarrow'No Starting Sheet available'
    :Return
    :EndIf
    TEETIMES GOLFERS&\squareFREAD GOLFID,IDATE>COMPS
    T\leftarrowDateTime.New"(cDATE.(Year Month Day)),"\downarrow[1]
                                    2460 1TTEETIMES
    R.Slots\leftarrow{DNEW Slot \omega}*`T, oc*`\downarrowGOLFERS
    R.OK}\leftarrow
\nabla
```

```
    \nabla R+MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME
        ; COURSECODES;COURSES;INDEX
        ;COURSEI;IDN;DATES;COMPS;IDATE
        ;TEETIMES;GOLFERS;OLD;COMP;HOURS
        ;MINUTES;NEAREST;TIME;NAMES;FREE
        ;FREETIMES;I;J;DIFF
        :Access Public
        A If GimmeNearest is O, tries for specified time
a If GimmeNearest is 1, gets nearest time
        CODE TEETIME NEAREST&3^ARGS
        COURSECODES COURSES INDEX-DFREAD GOLFID 1
        COURSEI+COURSECODESICODE
        COURSE&-DNEW GolfCourse(CODE(COURSEIっCOURSES,c''))
        SLOT*DNEW Slot TEETIME
        R+\squareNEW Booking(O COURSE SLOT'')
        :If COURSEI>\rhoCOURSECODES
    R.Message\leftarrow'Invalid course code'
    :Return
    :EndIf
    :If TEETIME.Now>TEETIME
    R.Message+'Requested tee-time is in the past'
    :Return
    :EndIf
    :If TEETIME>TEETIME.Now.AddDays 30
    R.Message\leftarrow'Requested tee-time is more than 30
                                    days from now'
        :Return
    :EndIf
    IDN*2 \NQ'.' 'DateToIDN',TEETIME.(Year Month Day)
    DATES COMPS&\squareFREAD GOLFID,COURSEIっINDEX
    IDATE<DATESIIDN
    :If IDATE>\rhoDATES
    TEETIMES < (24 60^7 0) +10x-1+ +1+8\times6
    GOLFERS&((\rhoTEETIMES),4)\rhoc''llowed per tee time
    :If 0=OLD }~(DATES<2 पNQ'.' 'DateToIDN',3\uparrow\TS)
                                    \imath\rhoDATES
        COMP<(TEETIMES GOLFERS)DFAPPEND GOLFID
        DATES,<IDN
        COMPS,<COMP
        (DATES COMPS)DFREPLACE GOLFID,COURSEIっINDEX
        :Else
            DATES[OLD]<IDN
            (TEETIMES GOLFERS)DFREPLACE GOLFID,
                                    COMP*OLDつCOMPS
                dATES COMPS \squarefreplace golfid,cOURSEIכINDEX
            :EndIf
```

```
            :Else
            COMP\leftarrowIDATEつCOMPS
            TEETIMES GOLFERS&\squareFREAD GOLFID COMP
        :EndIf
        HOURS MINUTES\leftarrowTEETIME.(Hour Minute)
        NAMES\leftarrow(3\downarrowARGS)~0''
        TIME\leftarrow24 60^HOURS MINUTES
        TIME <10\timesL0.5+TIME \div10
    :If ~NEAREST
        I&TEETIMES\imathTIME
        :If I>\rhoTEETIMES
            :OrIf ( \rhoNAMES)>د,/+/0= م"GOLFERS[I; ]
                R.Message}\leftarrow'Not available'
                :Return
            :EndIf
    :Else
            :If ~v/FREE\leftarrow( مNAMES ) < , /+/0= م`GOLFERS
                R.Message\leftarrow'Not available'
            :Return
            :EndIf
            FREETIMES\leftarrow(FREE×TEETIMES)+32767\times~FREE
            DIFF\leftarrow|FREETIMES-TIME
            I<DIFF\imathL/DIFF
    : EndIf
    J\leftarrow( د, / 0= م"`GOLFERS[I; ] )/\imath4
    GOLFERS[I; (\rhoNAMES) \uparrowJ]\leftarrowNAMES
    (TEETIMES GOLFERS)DFREPLACE GOLFID COMP
    TEETIME\leftarrowDateTime.New TEETIME.(Year Month Day),
                        3^24 60тIっTEETIMES
    SLOT.Time\leftarrowTEETIME
    SLOT.Players\leftarrow(د,/0<p``GOLFERS[I;])/GOLFERS[I;]
    R.(OK TeeTime)\leftarrow1 SLOT
\nabla

\section*{GolfService Example}

The GolfService Example Class illustrates the use of nested classes. GolfService was originally developed as a Web Service for Dyalog.Net and is one of the samples distributed in sampleslasp.netlwebservices. This version has been reconstructed as a stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.
\begin{tabular}{|l|l|}
\hline GolfCourse & \begin{tabular}{l} 
A Class that represents a Golf Course, having Fields Code \\
and Name.
\end{tabular} \\
\hline Slot & \begin{tabular}{l} 
A Class that represents a tee-time or match, having Fields \\
Time and Players. Up to 4 players may play together in a \\
match.
\end{tabular} \\
\hline Booking & \begin{tabular}{l} 
A Class that represents a reservation for a particular tee-time at \\
a particular golf course. This has Fields OK, Course, \\
TeeTTime and Message. The value of TeeTime is an \\
Instance of a Slot Class.
\end{tabular} \\
\hline StartingSheet & \begin{tabular}{l} 
A Class that represents a day's starting-sheet at a particular \\
golf course. It has Fields OK, Course, Date, Slots, \\
Message. Slots is an array of Instances of Slot Class.
\end{tabular} \\
\hline
\end{tabular}

The GolfService constructor takes the name of a file in which all the data is stored. This file is initialised by method InitFile if it doesn't already exist.
```

 G\leftarrow\squareNEW GolfService 'F:\HELP11.0\GOLFDATA'
 G
 \#.[Instance of GolfService]

```

The GetCourses method returns an array of Instances of the internal (nested) Class GolfCourse. Notice how the display form of each Instance is established by the GolfCourse constructor, to obtain the output display shown below.
```

 G.GetCourses
 St Andrews(1) Hindhead(2) Basingstoke(3)

```

All of the dates and times employ instances of the .Net type System.DateTime, and the following statements just set up some temporary variables for convenience later.
```

 \square<Tomorrow\leftarrow(\squareNEW DateTime(3\uparrow\TS)).AddDays 1
 31/03/2006 00:00:00
D<TomorrowAt7\&Tomorrow.AddHours 7
31/03/2006 07:00:00

```

The MakeBooking method takes between 4 and 7 parameters viz.
- the code for the golf course at which the reservation is required
- the date and time of the reservation
- a flag to indicate whether or not the nearest available time will do
- a list of up to 4 players who wish to book that time.

The result is an Instance of the internal Class Booking. Once again, \(\square D F\) is used to make the default display of these Instances meaningful. In this case, the reservation is successful.
```

 G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
 Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

```

Bob, Arnie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead (4-player restriction).
```

 G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
 Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack
 OK

```

However, Pete and Tiger are joined at 7:00 by Dave and Al.
```

 G.MakeBooking 2 TomorrowAt7 1 'Dave' 'Al'
 Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave
 Al OK

```

Up to now, all bookings have been made with the tee-time flexibility flag set to 1 . Inflexible Jim is only interested in playing at 7:00...
```

 G.MakeBooking 2 TomorrowAt7 O 'Jim'
 Hindhead(2) 31/03/2006 07:00:00 Not available
    ```
... so his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal Class StartingSheet for the given course and day.
```

 G.GetStartingSheet 2 Tomorrow
 Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00
....

```

\section*{Namespace Scripts}

A Namespace Script is a script that begins with a : Namespace statement and ends with a : EndNamespace statement. When a Namespace Script is fixed, it establishes an entire namespace that may contain other namespaces, functions, variables and classes.

The names of Classes defined within a Namespace Script which are parents, children, or siblings are visible both to one another and to code and expressions defined in the same script, regardless of the namespace hierarchy within it. Names of Classes which are nieces or nephews and their descendants are however not visible.

For example:
```

:Namespace a
d\&-पNEW a1
e\&\squareNEW bb2
:Class a1
| r\&foo
:Access Shared Public
r<-पNEW`b1 b2 \nabla :EndClass ^ a1 | r<goo r\leftarrowa1.foo \nabla \nabla r +foo r*\squareNEW`b1 b2
\nabla
:Namespace b
:Class b1
:EndClass \rho b1
:Class b2
:Class bb2
:EndClass A bb2
:EndClass a b2
:EndNamespace a b
:EndNamespace \rho a

```
```

 a.d
 \#.a.[a1]
a.e
\#.a.[bb2]
a.foo
\#.a.[b1] \#.a.[b2]

```

Note that the names of Classes b1 (a.b.b1) and b2 (a.b.b2) are not visible from their "uncle" a1 (a.a1).
```

 a.goo
 VALUE ERROR
foo[2] r<\squareNEW`b1 b2

```

Notice that Classes in a Namespace Script are fixed before other objects (hence the assignments to \(d\) and e are evaluated after Classes a 1 and bb2 are fixed), although the order in which Classes themselves are defined is still important if they reference one another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes) into a namespace defined by a script by any other means than editing the script, then these objects will be lost the next time the script is edited and fixed. Also, if you modify a variable which is defined in a script, the script will not be updated.

\section*{Namespace Script Example}

The DiaryStuff example illustrates the manner in which classes may be defined and used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.
Diary contains a (private) Field named entries, which is simply a vector of instances of DiaryEntry. These are 2-element vectors containing a .NET DateTime object and a description.

The entries Field is initialised to an empty vector of DiaryEntry instances which causes the invocation of the default constructor DiaryEntry. Make0 when Di ary is fixed. See "Empty Arrays of Instances: Why ?" on page 147 for further explanation.

The entries Field is referenced through the Entry Property, which is defined as the Default Property. This allows individual entries to be referenced and changed using indexing on a Diary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is referenced by the initialisation of the Diaries.entries Field
```

:Namespace DiaryStuff
:Using System
:Class DiaryEntry
:Field Public When
:Field Public What
\nabla Make(ymdhm wot)
:Access Public
:Implements Constructor
When What<(DNEW DateTime(6\uparrow5\uparrowymdhm))wot
ODFकWhen What
\nabla
\ Make0
:Access Public
:Implements Constructor
When What*-DNULL''
\nabla
:EndClass \rho DiaryEntry

```
```

:Class Diary
:Field Private entries <O\rhoDNEW DiaryEntry
R}\leftarrowAdd(ymdhm wot
:Access Public
R-DNEW DiaryEntry(ymdhm wot)
entries,\leftarrowR
\nabla
\nabla R\&DoingOn ymd;X
:Access Public
X\leftarrow,(\uparrowentries.When.(Year Month Day))^.=3 1\rho3\uparrowymd
R<X/entries
\nabla
\nabla R\&Remove ymdhm;X
:Access Public
:If R\leftarrowv/X\leftarrowentries.When=\squareNEW DateTime(6\uparrow5\uparrowymdhm)
entries}\leftarrow(~X)/entrie
:EndIf
\nabla
:Property Numbered Default Entry
R*Shape
R<pentries
\nabla
\nabla R\&Get arg
R*arg.Indexersventries
\nabla
\nabla Set arg
entries[arg.Indexers]*arg.NewValue
\nabla
:EndProperty
:EndClass \& Diary
:EndNamespace

```

Create a new instance of Diary.
D- पNEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April \(30^{\text {th }}\) "

> D.Add(2006430 9 0)'Meeting with John' \(30 / 04 / 2006\) 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April \(30^{\text {th } " . ~}\)
\[
\begin{aligned}
& \text { D.Add(2006 } 43010 \text { 0)'Dentist' } \\
& 30 / 04 / 2006 \text { 10:00:00 Dentist }
\end{aligned}
\]

One of the benefits of the Namespace Script is that Classes defined within it (which are typically related) may be used independently, so we can create a stand-alone instance of Di aryEntry; "Doctor at 11:00"...
```

 Doc*[DEW DiaryStuff.DiaryEntry((2006 4 30 11
    ```
0)'Doctor')
    Doc
    30/04/2006 11:00:00 Doctor
... and then use it to replace the second Diary entry with indexing:
\(D[2]+\) Doc
and just to confirm it is there...
D[2]
30/04/2006 11:00:00 Doctor
What am I doing on the \(30^{\text {th }}\) ?
```

 D.DoingOn 2006 4 30
 30/04/2006 09:00:00 Meeting with John ...
... 30/04/2006 11:00:00 Doctor

```

Remove the 11:00 appointment...
```

D.Remove 2006430110

```

1
and the complete Diary is...
[D
30/04/2006 09:00:00 Meeting with John

\section*{Class Declaration Statements}

This section summarises the various declaration statements that may be included in a Class or Namespace Script. For information on other declaration statements, as they apply to functions and methods, see "Function Declaration Statements" on page 69.

\section*{:Interface Statement}
```

:Interface <interface name>
...
:EndInterface

```

An Interface is defined by a Script containing skeleton declarations of Properties and/or Methods. The script must begin with a : Interface Statement and end with a: EndInterface Statement.

An Interface may not contain Fields.
Properties and Methods defined in an Interface, and the Class functions that implement the Interface, may not contain :Access Statements.

\section*{:Namespace Statement}
```

:Namespace <namespace name>

```
-••
: EndNamespace
A Namespace Script may be used to define an entire namespace containing other namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a : EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and : EndNamespace statements within the Namespace script.
Classes are defined by pairs of :Class and :EndClass statements within the Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one another and to code and expressions defined in the same script, regardless of the namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that refer to one another where the use of nested classes is inappropriate.

\section*{:Class Statement}
```

:Class <class name><:base class name> <,interface name...>
:Include <namespace>
...
:EndClass

```

A class script begins with a : Class statement and ends with a : EndClass statement. The elements that comprise the : Cl ass statement are as follows:
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline \begin{tabular}{l} 
class \\
name
\end{tabular} & \begin{tabular}{l} 
Optionally, specifies the name of the Class, which must \\
conform to the rules governing APL names.
\end{tabular} \\
\hline \begin{tabular}{l} 
base \\
class \\
name
\end{tabular} & \begin{tabular}{l} 
Optionally specifies the name of a Class from which this Class \\
is derived and whose members this Class inherits.
\end{tabular} \\
\hline \begin{tabular}{l} 
interface \\
name
\end{tabular} & The names of one or more Interfaces which this Class supports. \\
\hline
\end{tabular}

A Class may import methods defined in separate plain Namespaces with one or more : Inc lude statements. For further details, see "Including Namespaces in Classes" on page 184.

\section*{Examples:}

The following statements define a Class named Penguin that derives from (is based upon) a Class named Animal and which supports two Interfaces named BirdBehaviour and FishBehaviour.
```

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
\bullet.
:EndClass

```

The following statements define a Class named Penguin that derives from (is based upon) a Class named Animal and includes methods defined in two separate Namespaces named BirdStuff and FishStuff.
```

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
...
:EndClass

```

\section*{:Using Statement}
```

:Using <NameSpace[,Assembly]>

```

This statement specifies a .NET namespace that is to be searched to resolve unqualified names of .NET types referenced by expressions in the Class.
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline NameSpace & Specifies a .NET namespace. \\
\hline Assemb Ly & \begin{tabular}{l} 
Specifies the Assembly in which NameSpace is located. If the \\
Assembly is defined in the global assembly cache, you need \\
only specify its name. If not, you must specify a full or \\
relative pathname.
\end{tabular} \\
\hline
\end{tabular}

If the Microsoft .Net Framework is installed, the System namespace inmscorlib. dll is automatically loaded when Dyalog APL starts. To access this namespace, it is not necessary to specify the name of the Assembly.

When the class is fixed, QUSING is inherited from the surrounding space. Each :Using statement appends an element to ZUSING, with the exception of :Using with no argument:

If you omit <Namespace>, this is equivalent to clearing DUSING, which means that no .NET namespaces will be searched (unless you follow this statement with additional : Us ing statements, each of which will append to ZUSING).

To set ZUS ING, to a single empty character vector, which only allows references to fully qualified names of classes in mscorlib.dll, you must write:
: Using , (note the presence of the comma)
or
```

:Using ,mscorlib.dll

```
i.e. specify an empty namespace name followed by no assembly, or followed by the default assembly, which is always loaded.

\section*{:Attribute Statement}
```

:Attribute <Name> [ConstructorArgs]

```

The :Attribute statement is used to attach .Net Attributes to a Class or a Method.
Attributes are descriptive tags that provide additional information about programming elements. Attributes are not used by Dyalog APL but other applications can refer to the extra information in attributes to determine how these items can be used. Attributes are saved with the metadata of Dyalog APL .NET assemblies.
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline Name & The name of a .Net attribute \\
\hline ConstructorArgs & Optional arguments for the Attribute constructor \\
\hline
\end{tabular}

\section*{Example}

The following Class has SerializableAttribute and CLSCompliantAttribute attributes attached to the Class as a whole, and ObsoleteAttribute attributes attached to Methods foo and goo within it.
```

:Class c1
:using System
:attribute SerializableAttribute
:attribute CLSCompliantAttribute 1
| foo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute
\nabla
\nablagoo(p1 p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1
\nabla
:EndClass \rho c1

```

When this Class is exported as a .Net Class, the attributes are saved in its metadata. For example, Visual Studio will warn developers if they make use of a member which has the ObsoleteAttribute.

\section*{:Access Statement}
```

:Access <Private|Public><Instance|Shared><Overridable>
<Override>
:Access <WebMethod>

```

The :Access statement is used to specify characteristics for Classes, Properties and Methods.
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline PrivatelPublic & \begin{tabular}{l} 
Specifies whether or not the (nested) Class, Property \\
or Method is accessible from outside the Class or an \\
Instance of the Class. The default is Private.
\end{tabular} \\
\hline Instance \| Shared & \begin{tabular}{l} 
For a Field, specifies if there is a separate value of the \\
Field in each Instance of the Class, or if there is only \\
a single value that is shared between all Instances.For \\
a Property or Method, specifies whether the code \\
associated with the Property or Method runs in the \\
Class or Instance.
\end{tabular} \\
\hline WebMethod & \begin{tabular}{l} 
Applies only to a Method and specifies that the \\
method is exported as a web method. This applies \\
only to a Class that implements a Web Service.
\end{tabular} \\
\hline Overridable & \begin{tabular}{l} 
Applies only to an Instance Method and specifies that \\
the Method may be overridden by a Method in a \\
higher Class. See below.
\end{tabular} \\
\hline Override & \begin{tabular}{l} 
Applies only to an Instance Method and specifies that \\
the Method overrides the corresponding Overridable \\
Method defined in the Base Class. See below.
\end{tabular} \\
\hline
\end{tabular}

\section*{Overridable/Override}

Normally, a Method defined in a higher Class replaces a Method of the same name that is defined in its Base Class, but only for calls made from above or within the higher Class itself (or an Instance of the higher Class). The base method remains available in the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridable is replaced in situ (i.e. within its own Class) by a Method of the same name in a higher Class if that Method is itself declared with the Override keyword. For further information, see "Superseding Base Class Methods" on page 167.

\section*{Nested Classes}

The :Access statement is also used to control the visibility of one Class that is defined within another (a nested Class). A Nested Class may be either Private or Public. Note that the :Access Statement must precede the definition of any Class contents.

A Public Nested Class is visible from outside its containing Class and may be used directly in its own right, whereas a Private Nested Class is not and may only be used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested Classes and in that way expose them to the calling environment.

\section*{WebMethod}

Note that : Access WebMethod is equivalent to:
```

:Access Public
:Attribute System.Web.Services.WebMethodAttribute

```

\section*{:Implements Statement}

The : Implements statement identifies the function to be one of the following types.
```

:Implements Constructor <[:Base expr]>
:Implements Destructor
:Implements Method <InterfaceName.MethodName>
:Implements Trigger <name1><,name2,name3,...>

```
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline Constructor & Specifies that the function is a Class Constructor. \\
\hline : Base expr & \begin{tabular}{l} 
Specifies that the Base Constructor be called with the result \\
of the expression expr as its argument.
\end{tabular} \\
\hline Destructor & Specifies that the function is a Class Destructor. \\
\hline Method & \begin{tabular}{l} 
Specifies that the function implements the Method \\
MethodName whose syntax is specified by Interface \\
InterfaceName.
\end{tabular} \\
\hline Trigger & \begin{tabular}{l} 
Identifies the function as a Trigger Function which is \\
activated by changes to variable name1, name2, etc.
\end{tabular} \\
\hline
\end{tabular}

\section*{:Field Statement}
```

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
... FieldName << expr>

```

A:Field statement is a single statement whose elements are as follows:
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline PrivatelPublic & \begin{tabular}{l} 
Specifies whether or not the Field is accessible from \\
outside the Class or an Instance of the Class. The \\
default is Private.
\end{tabular} \\
\hline InstancelShared & \begin{tabular}{l} 
Specifies if there is a separate value of the Field in \\
each Instance of the Class, or if there is only a single \\
value that is shared between all Instances.
\end{tabular} \\
\hline ReadOnly & \begin{tabular}{l} 
If specified, this keyword prevents the value in the \\
Field from being changed after initialisation.
\end{tabular} \\
\hline FieldName & Specifies the name of the Field (mandatory). \\
\hline\(\leftarrow\) expr & Specifies an initial value for the Field. \\
\hline
\end{tabular}

\section*{Examples:}

The following statement defines a Field called Name. It is (by default), an Instance Field so every Instance of the Class has a separate value. It is a Public Field and so may be accessed (set or retrieved) from outside an Instance.
```

:Field Public Name

```

The following statement defines a Field called Months.
```

:Field Shared ReadOnly Months<12\uparrow(DNEW

``` DateTimeFormatInfo)
. AbbreviatedMonthNames
Months is a Shared Field so there is just a single value that is the same for every Instance of the Class. It is (by default), a Private Field and may only be referenced by code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and may not be altered after initialisation. Its initial value is calculated by an expression that obtains the short month names that are appropriate for the current locale using the .Net Type DateTimeFormatInfo.

Note that Fields are initialised when a Class script is fixed by the editor or by DFIX. If the evaluation of expr causes an error (for example, a VALUE ERROR), an appropriate message will be displayed in the Status Window and DF IX will fail with a DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its : Field statement.

In the second example above, the expression will only succeed if पUSING is set to the appropriate path, in this case System.Globalization.

\section*{:Property Section}

A Property is defined by a : Property ... : EndProperty section in a Class Script. The syntax of the :Property Statement, and its optional : Access statement is as follows:
```

:Property <Simple|Numbered|Keyed> <Default>
Name<,Name>...
:Access <Private|Public><Instance|Shared>
:EndProperty

```
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline Name & \begin{tabular}{l} 
Specifies the name of the Property by which \\
it is accessed. Additional Properties, sharing \\
the same PropertyGet and/or PropertySet \\
functions, and the same access behaviour \\
may be specified by a comma-separated list \\
of names.
\end{tabular} \\
\hline Simple|Numbered|Keyed & \begin{tabular}{l} 
Specifies the type of Property (see below). \\
The default is Simple.
\end{tabular} \\
\hline Default & \begin{tabular}{l} 
Specifies that this Property acts as the default \\
property for the Class when indexing is \\
applied directly to an Instance of the Class.
\end{tabular} \\
\hline PrivatelPublic & \begin{tabular}{l} 
Specifies whether or not the Property is \\
accessible from outside the Class or an
\end{tabular} \\
Instance of the Class. The default is \\
Private.
\end{tabular}

A Simple Property is one whose value is accessed (by APL) in its entirety and reassigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only ever partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are accessed via arbitrary keys instead of indices.

Numbered and Keyed Properties are designed to allow APL to perform selections and structural operations on the Property.

Within the body of a Property Section there may be:
- one or more : Access statements
- a single PropertyGet function.
- a single PropertySet function
- a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.
When a Class is fixed by the Editor or by DF IX, APL checks the validity of each Property section and the syntax of PropertyGet, PropertySet and PropertyShape functions within them. If anything is wrong, an error is generated and the Class is not fixed.

\section*{PropertyArguments Class}

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:
\begin{tabular}{|l|l|}
\hline Name & \begin{tabular}{l} 
The name of the property. This is useful when one function is \\
handling several properties.
\end{tabular} \\
\hline NewValue & \begin{tabular}{l} 
Array containing the new value for the Property or for selected \\
element(s) of the property as specified by Indexers.
\end{tabular} \\
\hline Indexers & \begin{tabular}{l} 
A vector that identifies the elements of the Property that are to \\
be referenced or assigned.
\end{tabular} \\
\hline
\end{tabular}

\section*{PropertyGet Function \(R \leftarrow G e t \quad\{i p a\}\)}

The name of the PropertyGet function must be Get, but is case-independent. For example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to the rank and shape specified by ipa. Indexers or be scalar.

If monadic, ipa is an instance of the internal class .
In all cases, ipa. Name contains the name of the Property being referenced and NewValue is undefined (VALUE ERROR).

If the Property is Simple, ipa. Indexers is undefined (VALUE ERROR).
If the Property is Numbered, ipa. Indexers is an integer vector of the same length as the rank of the property (as implied by the result of the Shape function) that identifies a single element of the Property whose value is to be obtained. In this case, R must be scalar.

If the Property is Keyed, ipa. Indexers is a vector containing the arrays that were specified within the square brackets in the reference expression. Specifically, ipa. Indexers will contain one more elements than the number of semi-colon (;) separators.

\section*{PropertySet Function Set ipa}

The name of the PropertySet function must be Set, but is case-independent. For example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
ipa is an instance of the internal class .
In all cases, ipa. Name contains the name of the Property being referenced and NewValue contains the new value(s) for the element(s) of the Property being assigned.

If the Property is Simple, ipa. Indexers is undefined (VALUE ERROR).
If the Property is Numbered, i pa. Indexers is an integer vector of the same length as the rank of the property (as implied by the result of the Shape function) that identifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa. Indexers is a vector containing the arrays that were specified within the square brackets in the assignment expression. Specifically, ipa. Indexers will contain one fewer elements than, the number of semi-colon (;) separators. If any index was elided, the corresponding element of ipa. Indexers is DNULL. However, if the Keyed Property is being assigned in its entirety, without square-bracket indexing, ipa. Indexers is undefined (VALUE ERROR).

\section*{PropertyShape Function \(R \leftarrow\) Shape \(\{i p a\}\)}

The name of the PropertyShape function must be Shape, but is case-independent. For example, shape, Shape, sHape and SHAPE are all valid names for the PropertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.
If monadic, ipa is an instance of the internal class. ipa. Name contains the name of the Property being referenced and NewValue and Indexers are undefined (VALUE ERROR).

The result \(R\) must be an integer vector or scalar that specifies the rank of the Property. Each element of \(R\) specifies the length of the corresponding dimension of the Property. Otherwise, the reference or assignment to the Property will fail with DOMAIN ERROR.

Note that the result \(R\) is used by APL to check that the number of indices corresponds to the rank of the Property and that the indices are within the bounds of its dimensions. If not, the reference or assignment to the Property will fail with RANK ERROR or LENGTH ERROR.

\section*{Chapter 4:}

\section*{Primitive Functions}

\section*{Scalar Functions}

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is identified in Table 1 below. Scalar functions are pervasive, i.e. their properties apply at all levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline+ & Identity & Plus (Add) \\
\hline- & Negative & Minus (Subtract) \\
\hline\(\times\) & Signum & Times (Multiply) \\
\hline\(\div\) & Reciprocal & Divide \\
\hline I & Magnitude & Residue \\
\hline L & Floor & Minimum \\
\hline\(\Gamma\) & Ceiling & Maximum \\
\hline\(\star\) & Exponential & Power \\
\hline\(\oplus\) & Natural Logarithm & Logarithm \\
\hline\(\odot\) & Pi Times & Circular \\
\hline\(!\) & Factorial & Binomial \\
\hline\(\sim\) & Not & \(\$\) \\
\hline\(?\) & Roll & \(\$\) \\
\hline\(\epsilon\) & Type (See Enlist) & \(\$\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline\(\wedge\) & & And \\
\hline\(\vee\) & & Or \\
\hline\(\tilde{\wedge}\) & & Nand \\
\hline\(\tilde{v}\) & & Nor \\
\hline\(<\) & Less \\
\hline\(\leq\) & Less Or Equal \\
\hline\(=\) & Equal \\
\hline\(\geq\) & & Greater Or Equal \\
\hline\(>\) & & Greater \\
\hline\(\neq\) & & Not Equal \\
\hline\(\$\) Dyadic form is not scalar & \\
\hline
\end{tabular}

\section*{Monadic Scalar Functions}
- The function is applied independently to each simple scalar in its argument.
- The function produces a result with a structure identical to its argument.
- When applied to an empty argument, the function produces an empty result. With the exception of + and \(\epsilon\), the type of this result depends on the function, not on the type of the argument. By definition + and \(\epsilon\) return a result of the same type as their arguments.

\section*{Example}
\[
\div 2(14)
\]
\[
0.5 \quad 10.25
\]

\section*{Dyadic Scalar Functions}
- The function is applied independently to corresponding pairs of simple scalars in its arguments.
- A simple scalar will be replicated to conform to the structure of the other argument. If a simple scalar in the structure of an argument corresponds to a non-simple scalar in the other argument, then the function is applied between the simple scalar and the items of the non-simple scalar. Replication of simple scalars is called SCALAR EXTENSION.
- A simple unit is treated as a scalar for scalar extension purposes. A UNIT is a single element array of any rank. If both arguments are simple units, the argument with lower rank is extended.
- The function produces a result with a structure identical to that of its arguments (after scalar extensions).
- If applied between empty arguments, the function produces a composite structure resulting from any scalar extensions, with type appropriate to the particular function. (All scalar dyadic functions return a result of numeric type.)

\section*{Examples}

357
\(2(34)+1(23)\)
\(3 \quad 57\)
\(\left(\begin{array}{ll}1 & 2) \\ 3\end{array}+4(56)\right.\)
5689
\(10 \times 2\left(\begin{array}{ll}3 & 4\end{array}\right)\)
40
20
\(24=2(46)\)
110
\(\left(\begin{array}{ll}1 & 1 \rho 5)-1(23)\end{array}\right.\)
432
\(1 \uparrow^{\prime}+20\)
0
\(0 \quad 00^{1 \uparrow(0 \rho c '} \quad\left(\begin{array}{ll}0 & 0\end{array}\right) \times{ }^{\prime \prime}\)
Note: The Axis operator applies to all scalar dyadic functions.

\section*{Mixed Functions}

Mixed rank functions are summarised in Table 2. For convenience, they are subdivided into five classes:

Table 2: Mixed rank functions
\begin{tabular}{|l|l|}
\hline Structural & \begin{tabular}{l} 
These functions change the structure of the arguments in \\
some way.
\end{tabular} \\
\hline Selection & These functions select elements from an argument. \\
\hline Selector & \begin{tabular}{l} 
These functions identify specific elements by a Boolean map \\
or by an ordered set of indices.
\end{tabular} \\
\hline Miscellaneous & \begin{tabular}{l} 
These functions transform arguments in some way, or \\
provide information about the arguments.
\end{tabular} \\
\hline Special & These functions have special properties. \\
\hline
\end{tabular}

In general, the structure of the result of a mixed primitive function is different from that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.
Mixed primitive functions are not pervasive. The function is applied to elements of the arguments, not necessarily independently.

\section*{Examples}
'CAT' 'DOG' 'MOUSE'乞c'DOG'

2
1 TWO 3
In the following tables, note that:
- [] Implies axis specification is optional
- \$ This function is in another class

Table 3: Structural Primitive Functions
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline\(\rho\) & \(\$\) & Reshape \\
\hline, & Ravel [ ] & Catenate/Laminate [ ] \\
\hline\(\overline{ }\), & Table & Catenate First / Laminate [ ] \\
\hline\(\phi\) & Reverse [ ] & Rotate [ ] \\
\hline\(\Theta\) & Reverse First [ ] & Rotate First [ ] \\
\hline\(\phi\) & Transpose & Transpose \\
\hline\(\uparrow\) & Mix/Disclose (First) [ ] & \(\$\) \\
\hline\(\downarrow\) & Split [ ] & \(\$\) \\
\hline\(\subset\) & Enclose [ ] & Partitioned Enclose [ ] \\
\hline\(\epsilon\) & Enlist (See Type) & \(\$\) \\
\hline
\end{tabular}

Table 4: Selection Primitive Functions
\begin{tabular}{|c|c|c|}
\hline Symbol & Monadic & Dyadic \\
\hline \(\bigcirc\) & Disclose /Mix & Pick \\
\hline \(\uparrow\) & \$ & Take [] \\
\hline \(\downarrow\) & \$ & Drop [] \\
\hline / & & Replicate [] \\
\hline t & & Replicate First [ ] \\
\hline \(\backslash\) & & Expand [] \\
\hline \(t\) & & Expand First [] \\
\hline ~ & \$ & Without (Excluding) \\
\hline n & Unique & Intersection \\
\hline u & & Union \\
\hline \(\rightarrow\) & Same & Left \\
\hline - & Identity & Right \\
\hline
\end{tabular}

Table 5: Selector Primitive Functions
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline\(\imath\) & Index Generator & Index Of \\
\hline\(\epsilon\) & \(\$\) & Membership \\
\hline\(\AA\) & Grade Up & Grade Up \\
\hline\(\sqcap\) & Grade Down & Grade Down \\
\hline\(?\) & \(\$\) & Deal \\
\hline\(\underline{\epsilon}\) & & Find \\
\hline
\end{tabular}

Table 6: Miscellaneous Primitive Functions
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline\(\rho\) & Shape & \(\$\) \\
\hline\(\equiv\) & Depth & Match \\
\hline\(\not \equiv\) & & Not Match \\
\hline\(\Phi\) & Execute & Execute \\
\hline\(\Phi\) & Format & Format \\
\hline\(\perp\) & & Decode (Base) \\
\hline\(\top\) & & Encode (Representation) \\
\hline 四 & Matrix Divide & Matrix Inverse \\
\hline
\end{tabular}

Table 7: Special Primitive Functions
\begin{tabular}{|l|l|l|}
\hline Symbol & Monadic & Dyadic \\
\hline\(\rightarrow\) & Abort & \\
\hline\(\rightarrow\) & Branch & \\
\hline\(\leftarrow\) & \(\$\) & Assignment \\
\hline\([\) I \(] \leftarrow\) & \(\$\) & Assignment(Indexed) \\
\hline ( I ) \(\leftarrow\) & & Assignment(Selective) \\
\hline[] & & Indexing \\
\hline
\end{tabular}

\section*{Conformability}

The arguments of a dyadic function are said to be CONFORMABLE if the shape of each argument meets the requirements of the function, possibly after scalar extension.

\section*{Fill Elements}

Some primitive functions may include fill elements in their result. The fill element for an array is the enclosed type of the disclose of the array ( \(c \in \supset Y\) for array \(Y\) ). The Type function ( \(\epsilon\) ) replaces a numeric value with zero and a character value with ' '.

The Disclose function ( \(\supset\) ) returns the first item of an array. If the array is empty, \(\supset Y\) is the PROTOTYPE of \(Y\). The prototype is the type of the first element of the original array.

Primitive functions which may return an array including fill elements are Expand ( \(\backslash\) or \(\dagger\) ), Replicate (/ or \(\boldsymbol{f}\) ), Reshape ( \(\rho\) ) and Take ( \(\uparrow\) ).

\section*{Examples}
er5
00000
\(\epsilon コ(\imath 3)\left({ }^{\prime} A B C '\right)\)
000
\[
c \in \supset(\imath 3)\left({ }^{\prime} A B C^{\prime}\right)
\]

000
\[
c \in \supset c(\imath 3)\left({ }^{\prime} A B C^{\prime}\right)
\]

000
\[
\begin{aligned}
& A \leftarrow^{\prime} A B C^{\prime} \quad\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
& A \leftarrow 0 \rho A \\
& c \in \supset A
\end{aligned}
\]

111

\section*{Axis Operator}

The axis operator may be applied to all scalar dyadic primitive functions and certain mixed primitive functions. An integer axis identifies a specific axis along which the function is to be applied to one or both of its arguments. If the primitive function is to be applied without an axis specification, a default axis is implied, either the first or last.

\section*{Example}

\section*{10 1/[1] 3 2pr6}

12
56
\(123+[2] 23 \rho 102030\)
112233
112233
Sometimes the axis value is fractional, indicating that a new axis or axes are to be created between the axes identified by the lower and upper integer bounds of the value (either of which might not exist).

\section*{Example}
'NAMES',[0.5]' = '
NAMES
====
DIO is an implicit argument of an axis specification.

\section*{Functions (A-Z)}

Scalar and mixed primitive functions are presented in alphabetical order of their descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions are described in terms of single element arguments. The rules for extension are defined at the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the function is implied by its syntax in the heading block.

\section*{Abort:}

This is a special case of the Branch function used in the niladic sense. If it occurs in a statement it must be the only symbol in an expression or the only symbol forming an expression in a text string to be executed by \(\pm\). It clears the most recently suspended statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain of operators.

\section*{Examples}
\[
\nabla
\]
\begin{tabular}{ll} 
& \(\nabla \mathrm{F}\) \\
{\([1]\)} & \({ }^{\prime} \mathrm{G}[1]^{\prime}\) \\
{\([2]\)} & \(\vec{\prime}\) \\
{\([3]\)} & \({ }^{\prime} \mathrm{G}[3]^{\prime}\)
\end{tabular}

F
F[1]
G[1]
DVR'VALIDATE'
\(\nabla\) Validate
[1] \(\rightarrow(12=1 \uparrow \square A I) \rho 0 \diamond\) 'ACCOUNT NOT AUTHORISED' \(\diamond \rightarrow\) \(\nabla\)
validate
ACCOUNT NOT AUTHORISED
\(1 \uparrow \square A I\)
52
\(R \leftarrow X+Y\)
\(Y\) must be numeric. \(X\) must be numeric. \(R\) is the arithmetic sum of \(X\) and \(Y . R\) is numeric. This function is also known as Plus.

\section*{Examples}
\[
12+34
\]

46
\(12+3, c 45\)
467
1J1 \(2 \mathrm{~J} 2+3 \mathrm{~J} 3\)
4 J 4 5J5
\(-5+4 \mathrm{~J} 45 \mathrm{J5}\)
-1 J 4 0J5

\section*{And, Lowest Common Multiple: \\ \(R \leftarrow X^{\wedge} Y\)}

\section*{Case 1: \(X\) and \(Y\) are Boolean}
\(R\) is Boolean is determined as follows:
\begin{tabular}{lll}
\(X\) & \(Y\) & \(R\) \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}

Note that the ASCII caret (^) will also be interpreted as an APL And (^).

\section*{Example}
```

 0 1 0 1 ^ 0 0 1 1
 0 0 1

```

\section*{Case 2: Either or both \(X\) and \(Y\) are numeric (non-Boolean)}
\(R\) is the lowest common multiple of \(X\) and \(Y\). Note that in this case, \(\square C T\) is an implicit argument.

\section*{Example}


\section*{Assignment:}
\[
X \leftarrow Y
\]

Assignment allocates the result of the expression Y to the name or names in X .
If \(Y\) is an array expression, \(X\) must contain one or more names which are variables, system variables, or are undefined. Following assignment, the name(s) in \(X\) become variable(s) with value(s) taken from the result of the expression Y .

If \(X\) contains a single name, the variable assumes the value of \(Y\).
The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

\section*{Examples}
\(A \leftarrow 2.3\)
A
2.3
\(A \leftarrow 23\)
A
123

More than one name may be specified in \(X\) by using vector notation. If so, \(Y\) must be a vector or a scalar. If \(Y\) is a scalar, its value is assigned to all names in \(X\). If \(Y\) is a vector, each element of \(Y\) is assigned to the corresponding name in \(X\).

\section*{Examples}

A \(B \leftarrow 2\)
A
2
B
2
P DIO Q \({ }^{\prime}\) TEXT' 1 ( \(\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)\)
P
TEXT
DIO
1
Q
123

For compatibility with IBM's APL2, the list of names specified in \(X\) may be enclosed in parentheses.

\section*{Examples}
(A B C) +123
(D E) +'Hello' 'World'
Multiple assignments are permitted. The value of \(Y\) is carried through each assignment:
\[
000^{I, J, K+K+0}
\]

\section*{Function Assignment}

If \(Y\) is a function expression, \(X\) must be a single name which is either undefined, or is the name of an existing function or defined operator. \(X\) may not be the name of a system function, or a primitive symbol.

\section*{Examples}
```

PLUSヶ+ PLUS

```
\(+\)
```

 SUM*+/
 SUM
 +/

```
MEAN \(+\{(+/ \omega) \div \rho \omega\}\)

\section*{Namespace Reference Assignment}

If an expression evaluates to a namespace reference, or ref, you may assign it to a name. A name assigned to a simple scalar ref, has name class 9 , whereas one assigned to an array containing refs has name class 2 .

> 'f1'DWC'Form'
> 'ns1' DNS '1
```

N+ns1

$$
\text { CNC'N' } \quad \text { a name class of a scalar ref }
$$

```

9
\[
F \leftarrow f 1
\]

DNC'F' \(\quad\) A name class of a scalar ref
9
\[
\text { refs } \leftarrow N \text { F } \quad \text { vector of refs. }
\]

2
\[
\text { UNC'refs' } \quad \text { a nameclass of vector. }
\]

F2 2 2 refs
DNC 'F2'
9

\section*{Re-Assignment}

A name that already exists may be assigned a new value if the assignment will not alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted re-assignments is as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline & Ref & Variable & Function & Operator \\
\hline Ref & Yes & Yes & & \\
\hline Variable & Yes & Yes & & \\
\hline Function & & & Yes & Yes \\
\hline Operator & & & Yes & Yes \\
\hline
\end{tabular}

\section*{Assignment (Indexed): \\ \(\{R\}+X[I]+Y\)}

Indexed Assignment is the Assignment function modified by the Indexing function. The phrase [I] \& is treated as the function for descriptive purposes.
\(Y\) may be any array. \(X\) may be the name of any array. I must be a valid index specification. The shape of \(Y\) must conform with the shape (implied) of the indexed structure defined by I. If \(Y\) is a scalar or a unit vector it will be extended to conform. A side effect of Indexed Assignment is to change the value of the indexed elements of \(X\).
\(R\) is the value of \(Y\). If the result is not explicitly assigned or used it is suppressed.
DIO is an implicit argument of Indexed Assignment.
Three forms of indexing are permitted.

\section*{Simple Indexed Assignment}

For vector \(X, I\) is a simple integer array whose items are from the set \(\imath \rho\) R. Elements of X identified by index positions I are replaced by corresponding elements of Y .
```

Examples
+A\leftarrowr5
12345

```
    \(A\left[\begin{array}{ll}2 & 3\end{array}\right]+10 \diamond A\)
1101045

The last-most element of \(Y\) is assigned when an index is repeated in I :
```

 A[2 2]+100 101 \diamond A
 101 10 4 5

```

For matrix \(X, I\) is composed of two simple integer arrays separated by the semicolon character (;). The arrays select indices from the rows and columns of \(X\) respectively.

\section*{Examples}
```

 +B+2 3\rho'REDSUN'
    ```
RED
SUN
\[
B[2 ; 2] \leftarrow^{\prime} O^{\prime} \diamond B
\]

RED

For higher-order array \(X, I\) is a series of simple integer arrays with adjacent arrays separated by a single semicolon character (;). Each array selects indices from an axis of \(X\) taken in row-major order.

\section*{Examples}
C

111213
141516
212223
242526
\(C[1 ; 1 ; 3]+103 \diamond C\)
1112103
141516
\(2122 \quad 23\)
\(2425 \quad 26\)
An indexing array may be ELIDED. That is, if an indexing array is omitted from the \(K\) th axis, the indexing vector \(\imath(\rho X)[K]\) is implied:
```

$C[; 1 ; 23] \leftarrow 22 \rho 112113122123$ 。 C

```

11112113
\(14 \quad 15 \quad 16\)
21122123
\(24 \quad 25 \quad 26\)
\(C[; ;]+0 \diamond C\)
000
000
000
000

\section*{Choose Indexed Assignment}

The index specification \(I\) is a non-simple integer array. Each item identifies a single element of \(X\) by a set of indices with one element per axis of \(X\) in row-major order.

\section*{Examples}
```

 C
 11 12 13 14
2122 23 24
C[c1 1]*101 \diamond C
101 12 13 14
2122 23 24
C[(1 2) (2 3)]\$102 203 \diamond C
101 102 13 14
21 22 203 24
C[2 2\rho(1 3)(2 4)(2 1)(1 4)] T 2 2\rho103 204 201 104 \diamond C
101 102 103 104
201 22 203 204

```

A scalar may be indexed by the enclosed empty vector:

\section*{S}

10
```

 S[c\imath0]*c'VECTOR' \diamond S
    ```
VECTOR
\[
S[c \imath 0] \leftarrow 5 \diamond S
\]

5
Choose Indexed Assignment may be used very effectively in conjunction with Index Generator ( \(\imath\) ) and Structural functions in order to assign into an array:
```

 C
 11 12 13 14
2122 23 24
\imath\rhoC
1 1 1 1 2 1 1 3 1 4
2 1 2 2 2 3 2 4
C[1 1\phi\imath\rhoC]<1 2 \diamond C
1121314
21 2 23 24
C[2-1^\imath\rhoC]*99 \diamond C
11213 99
21 2 23 99

```

\section*{Reach Indexed Assignment}

The index specification I is a non-simple integer array, each of whose items reach down to a nested element of \(X\). The items of an item of I are simple vectors (or scalars) forming sets of indices that index arrays at successive levels of \(X\) starting at the top-most level. A set of indices has one element per axis at the respective level of nesting of \(X\) in row-major order.
```

Examples
D\leftarrow(2 3pr6)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')
D
1 2 3 SMITH JONES
45 SAM BILL
\#J\leftarrowc2 (1 2)
-3
D[J]*c'WILLIAMS' \diamond D
1 2 3 SMITH WILLIAMS
45 SAM BILL
D[(1 (1 1 1))(2 (2 2) 1)]<10 'W' \diamond D
102 SMITH WILLIAMS
45 SAM WILL
E
GREEN YELLOW RED
E[c2 1]*'M' \diamond E
GREEN MELLOW RED

```

The context of indexing is important. In the last example, the indexing method is determined to be Reach rather than Choose since E is a vector, not a matrix as would be required for Choose. Observe that:
\[
c 21 \leftrightarrow c(c 2),(c 1)
\]

Note that for any array \(A, A[c \theta]\) represents a scalar quantity, which is the whole of A, so:
\[
A+5 \rho 0
\]

A
00000
\(A[c \theta]+1\)
A
1

\section*{Assignment (Selective): \\ \((E X P X)+Y\)}

X is the name of a variable in the workspace. EXP is an expression that selects elements of \(X . Y\) is an array expression. The result of the expression \(Y\) is allocated to the elements of \(X\) selected by EXP.

The following functions may appear in the selection expression. Where appropriate these functions may be used with axis [ ].
\begin{tabular}{ll}
\(\uparrow\) & Take \\
\(\downarrow\) & Drop \\
, & Ravel \\
\(\phi\) & Reverse, Rotate \\
\(\rho\) & Reshape \\
\(\nu\) & Disclose, Pick \\
\(\phi\) & Transpose (Monadic and Dyadic) \\
\(/\) & Replicate \\
\(\backslash\) & Expand \\
\(\square\) & Index \\
\(\epsilon\) & Enlist \((\square M L \geq 1)\)
\end{tabular}

Note: Mix and Split (monadic \(\uparrow\) and \(\downarrow\) ), Type (monadic \(\epsilon\) when \(\square M L<1\) ) and Membership (dyadic \(\epsilon\) ) may not be used in the selection expression.

\section*{Examples}

A \({ }^{\prime}\) 'HELLO'
( (A \(\left.\left.\epsilon^{\prime} A E I O U '\right) / A\right) \leftarrow^{\prime}{ }^{\prime}\)
A
\(H * L L *\)
\(Z+3\) 4pr12
( \(5 \uparrow, \mathrm{Z}\) ) \(\leftarrow 0\)
- \(\quad 2\)

0000
\(\begin{array}{llll}0 & 6 & 7 & 8\end{array}\)
9101112

        MAT \(\leftarrow 3\) 3pr9
        (1 1 1 MAT) \(<0\)
        MAT
023
406
780

\section*{Binomial:}
\(X\) and \(Y\) may be any numbers except that if \(Y\) is a negative integer then \(X\) must be a whole number (integer). \(R\) is numeric. An element of \(R\) is integer if corresponding elements of \(X\) and \(Y\) are integers. Binomial is defined in terms of the function Factorial for positive integer arguments:
\[
X!Y \leftrightarrow(!Y) \div(!X) \times!Y-X
\]

For other arguments, results are derived smoothly from the Beta function:
\[
\operatorname{Beta}(X, Y) \leftrightarrow \div Y \times(X-1)!X+Y-1
\]

For positive integer arguments, \(R\) is the number of selections of \(X\) things from \(Y\) things.

\section*{Example}
\[
11.21 .41 .61 .82!5
\]
56.1056892487 .2194246868 .2811047869 .22791670410

2!3j2
1 J5
Branch:
Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first element. The function has no explicit result. It is used to modify the normal sequence of execution of expressions or to resume execution after a statement has been interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:
\begin{tabular}{|l|l|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \begin{tabular}{l} 
Entered in a Statement \\
in a Defined Function
\end{tabular} & Entered in Immediate Execution Mode \\
\hline\(\rightarrow\) LINE & \begin{tabular}{l} 
Continue with the \\
specific line
\end{tabular} & \begin{tabular}{l} 
Restart execution at the specific line of \\
the most recently suspended function
\end{tabular} \\
\hline\(\rightarrow 20\) & \begin{tabular}{l} 
Continue with the next \\
expression
\end{tabular} & No effect \\
\hline
\end{tabular}

In a defined function, if \(Y\) is non-empty then the first element in \(Y\) specifies a statement line in the defined function to be executed next. If the line does not exist, then execution of the function is terminated. For this purpose, line 0 does not exist. (Note that statement line numbers are independent of the index origin DIO).

If \(Y\) is empty, the branch function has no effect. The next expression is executed on the same line, if any, or on the next line if not. If there is no following line, the function is terminated.

The : GoTo statement may be used in place of Branch in a defined function.

\section*{Example}
\begin{tabular}{lll} 
& \(\nabla\) & TEST \\
{\([1]\)} & 1 \\
{\([2]\)} & \(\rightarrow 4\) \\
{\([3]\)} & 3 \\
{\([4]\)} & & 4
\end{tabular}

TEST
1
4
In general it is better to branch to a LABEL than to a line number. A label occurs in a statement followed by a colon and is assigned the value of the statement line number when the function is defined.

\section*{Example}
\begin{tabular}{cc} 
& \(\nabla\) TEST \\
{\([1]\)} & 1 \\
{\([2]\)} & \(\rightarrow\) FOUR \\
{\([3]\)} & 3 \\
{\([4]\)} & FOUR:4 \\
\multicolumn{2}{c}{\(\quad \nabla\)}
\end{tabular}

The previous examples illustrate unconditional branching. There are numerous APL idioms which result in conditional branching. Some popular idioms are identified in the following table:
\begin{tabular}{|c|c|}
\hline Branch Expression & Comment \\
\hline \(\rightarrow\) TEST/L1 & Branches to label L1 if TEST results in 1 but not if TEST results in 0 . \\
\hline \(\rightarrow\) TEST \(\rho\) L1 & Similar to above. \\
\hline TEST^L1 & Similar to above. \\
\hline -L1p \(\sim_{\text {TEST }}\) & Similar to above. \\
\hline \(\rightarrow\) L1「てTEST & Similar to above but only if \(\overline{\text { I }}\) ¢ \(\leftrightarrow 1\). \\
\hline \(\rightarrow\) L1×2TEST & Similar to above but only if \(\overline{\text { I }}\) O \(\leftrightarrow 1\). \\
\hline \(\rightarrow(\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3)[\mathrm{N}]\) & Unconditional branch to a selected label. \\
\hline \(\rightarrow(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3) / \mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3\) & Branches to the first selected label dependent on tests \(\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3\). If all tests result in 0 , there is no branch. \\
\hline \(\rightarrow N\) L 1 , L2, L3 & Unconditional branch to thefirst label after rotation. \\
\hline
\end{tabular}

A branch expression may occur within a statement including \(\diamond\) separators:
[5] \(\rightarrow N E X T \rho \ddot{\sim} T E S T \diamond A \leftarrow A+1 \diamond \rightarrow E N D\)
[6] NEXT:
In this example, the expressions ' \(A \leftarrow A+1\) ' and ' \(\rightarrow E N D\) ' are executed only if TEST returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued within the most recently suspended function, if any, in the state indicator. If the state indicator is empty, or if the argument Y is the empty vector, the branch expression has no effect. If a statement line is specified which does not exist, the function is terminated. Otherwise, execution is restarted from the beginning of the specified statement line in the most recently suspended function.

\section*{Example}
\begin{tabular}{|c|c|}
\hline & \(\nabla \mathrm{F}\) \\
\hline [1] & 1 \\
\hline [2] & 2 \\
\hline [3] & 3 \\
\hline & \(\nabla\) \\
\hline
\end{tabular}
```

 2 ISTOP'F'
    ```
        F
1
```

F[2]
)SI
\#.F[2]*
->2

```
2
3

The system constant \(\quad\) LC returns a vector of the line numbers of statement lines in the state indicator, starting with that in the most recently suspended function. It is convenient to restart execution in a suspended state by the expression:
\(\rightarrow \square \mathrm{LC}\)

\section*{Catenate/Laminate:}
\(\mathrm{R}+\mathrm{X},[\mathrm{K}] \mathrm{Y}\)
\(Y\) may be any array. \(X\) may be any array. The axis specification is optional. If specified, K must be a numeric scalar or unit vector which may have a fractional value. If not specified, the last axis is implied.

The form \(R \leftarrow X-Y\) may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:
1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

\section*{Catenation with Integer or Implied Axis Specification}

The arrays \(X\) and \(Y\) are joined along the required axis to form array R. A scalar or unit vector is extended to the shape of the other argument except that the required axis is restricted to a unit dimension. \(X\) and \(Y\) must have the same shape (after extension) except along the required axis, or one of the arguments may have rank one less than the other, provided that their shapes conform to the prior rule after augmenting the array of lower rank to have a unit dimension along the required axis.

The rank of \(R\) is the greater of the ranks of the arguments, but not less than 1 .
```

Examples
'FUR','LONG'
FURLONG
1,2
12
(2 40'THISWEEK');'='
THIS
WEEK
===
S,[1]+tS*2 3pı6
123
4 5
59

```

If, after extension, exactly one of \(X\) and \(Y\) have a length of zero along the joined axis, then the data type of \(R\) will be that of the argument with a non-zero length. Otherwise, the data type of \(R\) will be that of \(X\).

\section*{Lamination with Fractional Axis Specification}

The arrays \(X\) and \(Y\) are joined along a new axis created before the \(\lceil K\) th axis. The new axis has a length of 2 . \(K\) must exceed \(\square I O\) (the index origin) minus 1 , and \(K\) must be less than DIO plus the greater of the ranks of \(X\) and \(Y\). A scalar or unit vector argument is extended to the shape of the other argument. Otherwise \(X\) and \(Y\) must have the same shape.

The rank of \(R\) is one plus the greater of the ranks of \(X\) and \(Y\).

\section*{Examples}
'HEADING', [0.5]'-'
HEADING
    'NIGHT',[1.5]'*'
\(N *\)
I*
G*
H*
T*
    -IO -0
    'HEADING', [-0.5]'-'
HEADING
-------

\section*{Catenate First:}

\section*{\(R+X ;[K] Y\)}

The form \(R \leftarrow X-Y\) implies catenation along the first axis whereas the form \(R \leftarrow X, Y\) implies catenation along the last axis (columns). See Catenate/Laminate above.

\section*{Ceiling:}

Ceiling is defined in terms of Floor as \(\lceil Y \leftrightarrow-\lfloor-Y\)
Y must be numeric.
If an element of \(Y\) is real, the corresponding element of \(R\) is the least integer greater than or equal to the value of \(Y\).

If an element of \(Y\) is complex, the corresponding element of \(R\) depends on the relationship between the real and imaginary parts of the numbers in Y .

\section*{Examples}
\(\begin{array}{llllll}-2 & 1 & \Gamma_{0}^{-2.3} & 0.3 & 0.1 & 100 \\ 4\end{array}\)
\[
\begin{array}{lll}
1.2 \mathrm{j} 2.5 & 1.2 \mathrm{j}^{-2} 2.5
\end{array}
\]

1J3 1J-2
For further explanation, see "Floor:" on page 259.
पCT is an implied argument of Ceiling.

\section*{Circular:}

\section*{\(R+X O Y\)}
\(Y\) must be numeric. \(X\) must be an integer in the range \({ }^{-12} \leq X \leq 12 . R\) is numeric.
\(X\) determines which of a family of trigonometric, hyperbolic, Pythagorean and complex functions to apply to \(Y\), from the following table. Note that when \(Y\) is complex, \(a\) and \(b\) are used to represent its real and imaginary parts, while \(\theta\) represents its phase.
\begin{tabular}{|l|l|l|}
\hline\((-X) \circ Y\) & \(X\) & \(X \circ Y\) \\
\hline\((1-Y * 2) * .5\) & 0 & \((1-Y * 2) * .5\) \\
\hline Arcsin \(Y\) & 1 & Sine \(Y\) \\
\hline Arccos \(Y\) & 2 & Cosine \(Y\) \\
\hline Arctan \(Y\) & 3 & Tangent Y \\
\hline\((Y+1) \times((Y-1) \div Y+1) * 0.5\) & 4 & \((1+Y * 2) * .5\) \\
\hline Arcsinh \(Y\) & 5 & Sinh Y \\
\hline Arccosh \(Y\) & 6 & Cosh \(Y\) \\
\hline Arctanh \(Y\) & 7 & Tanh \(Y\) \\
\hline\(-80 Y\) & 8 & \((-1+Y * 2) * 0.5\) \\
\hline\(Y\) & 9 & a \\
\hline\(+Y\) & 10 & \(I Y\) \\
\hline\(Y \times 0 J 1\) & 11 & b \\
\hline\(\times Y \times 0 J 1\) & 12 & \(\theta\) \\
\hline
\end{tabular}

\section*{Examples}
\[
0-1 \circ 1
\]
01.570796327
\(10(P I \leftarrow 01) \div 234\)
10.86602540380 .7071067812
\(20 P I \div 3\)
0.5
\(91103.5 \mathrm{~J}^{-1} .2\)
\(3.5-1.2\)
\(911 \circ .03 .5 \mathrm{~J}^{-1} .2\) 2J3 3J4
3.523
\(-1.234\)

\section*{Conjugate:}

\section*{R++Y}

If \(Y\) is complex, \(R\) is \(Y\) with the imaginary part of all elements negated.
If \(Y\) is real or non-numeric, \(R\) is the same array unchanged.

\section*{Examples}
```

 - +3 j 4
 \(3 \mathrm{~J}-4\)
 \(+1 j 22 j 33 j 4\)
 \(1 \mathrm{~J}^{-} 22 \mathrm{~J}^{-} 33 \mathrm{~J}^{-4}\)
 3j4++3j4
 6
 25
 \(+A \leftarrow _5\)
 12345
 \(+\square E X^{\prime} A^{\prime}\)
 1

```
\(Y\) must be a simple scalar or unit vector containing a non-negative integer. \(X\) must be a simple scalar or unit vector containing a non-negative integer and \(X \leq Y\).
\(R\) is an integer unit vector obtained by making \(X\) random selections from \(\imath Y\) without repetition.

\section*{Examples}

13?52
7402428123364920442351
13?52
204223631494528535374840

DIO and \(\square R L\) are implicit arguments of Deal. A side effect of Deal is to change the value of DRL. See "Random Number Generator:" on page 366 and "Random Link: " on page 575 .
\(R \leftarrow X \perp Y\)
Y must be a simple numeric array. X must be a simple numeric array. R is the numeric array which results from the evaluation of \(Y\) in the number system with radix X.
\(X\) and \(Y\) are conformable if the length of the last axis of \(X\) is the same as the length of the first axis of \(Y\). A scalar or unit vector is extended to a vector of the required length. If the last axis of \(X\) or the first axis of \(Y\) has a length of 1 , the array is extended along that axis to conform with the other argument.

The shape of \(R\) is the catenation of the shape of \(X\) less the last dimension with the shape of \(Y\) less the first dimension. That is:
\[
\rho R \leftrightarrow(-1 \downarrow \rho X), 1 \downarrow \rho Y
\]

For vector arguments, each element of \(X\) defines the ratio between the units for corresponding pairs of elements in \(Y\). The first element of \(X\) has no effect on the result.

This function is also known as Base Value.

\section*{Examples}
\(6060 \perp 313\)
193
0 60」3 13
193
\(60 \perp 313\)
193
\(2 \perp 1010\)
10

\section*{Polynomial Evaluation}

If \(X\) is a scalar and \(Y\) a vector of length \(n\), decode evaluates the polynomial(Index origin 1):
\(Y[1] X^{n-1}+Y[2] X^{n-2}+\ldots+Y[n] X^{0}\)

\section*{Examples}
\[
26
\]
\[
2 \perp 1234
\]

58
\[
3 \perp 1234
\]
\(1 \mathrm{j} 1 \perp 1234\)
5J9
For higher order array arguments, each of the vectors along the last axis of \(X\) is taken as the radix vector for each of the vectors along the first axis of Y .

\section*{Examples}
\begin{tabular}{llllllll} 
& M \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{tabular}

A
111
222
333
444
\begin{tabular}{llllrrrr}
0 & 1 & \(A \perp M\) \\
0 & 1 & 1 & 2 & 1 & 2 & 2 & 3 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 1 & 3 & 4 & 9 & 10 & 12 & 13 \\
0 & 1 & 4 & 5 & 16 & 17 & 20 & 21
\end{tabular}

Scalar extension may be applied:
```

 2 1M
 0123 4 5 6 7

```

Extension along a unit axis may be applied:
\[
+A+2 \quad 1 \rho 2 \quad 10
\]
\[
2
\]

10
\begin{tabular}{llrrrrrr}
0 & 1 & 2 & 3 & 3 & 4 & 5 & 6 \\
0 & 1 & 10 & 11 & 100 & 101 & 110 & 111
\end{tabular}

\section*{Depth:}
(DML)
\(R \leftarrow \equiv Y\)
\(Y\) may be any array. \(R\) is the number of levels of nesting of \(Y\). A simple scalar (rank-0 number, character or namespace-reference) has a depth of 0 .

A higher rank array, all of whose items are simple scalars, is termed a simple array and has a depth of 1 . An array whose items are not all simple scalars is nested and has a depth 1 greater than that of its most deeply nested item.
\(Y\) is of uniform depth if it is simple or if all of its items have the same uniform depth.
If \(\square M L<2\) and \(Y\) is not of uniform depth then \(R\) is negated.
If \(\square M L<2\), a negative value of \(R\) indicates non-uniform depth.

\section*{Examples}
- \(\equiv 1\)

0
\(\equiv^{\prime} \mathrm{A}^{\prime}\)
0
\(\equiv^{\prime} A B C '\)
1
1
\(\equiv 1\) ' \(A\) '
\(\square M L \leftarrow 0\)
\(-3\)

\(\square M L \leftarrow 2\)
\(\equiv A\)
3
12
\(\begin{array}{lll}1 & 2 & \equiv_{\cdots} \\ 0 & 0 & 0\end{array} 1_{A}^{A}\)

\section*{Direction (Signum):}

R+xY
\(Y\) may be any numeric array.

Where an element of \(Y\) is real, the corresponding element of \(R\) is an integer whose value indicates whether the value is negative ( \({ }^{-1}\) ), zero (0) or positive (1).

Where an element of \(Y\) is complex, the corresponding element of \(R\) is a number with the same phase but with magnitude (absolute value) 1. It is equivalent to \(Y \div 1 Y\).

\section*{Examples}
\[
x^{-15.3} 0101
\]
\(-101\)
\(\times 3 \mathrm{j} 44 \mathrm{j} 5\)
0.6 J 0.80 .6246950476 JO .7808688094
\(\{\omega \div \mid \omega\} 3 j 44 j 5\)
0.6J0.8 0.6246950476J0.7808688094
|×3j4 4j5
11

\section*{Disclose: ( \(\quad\) ML) \(\quad R \nleftarrow Y\) or \(R \leftarrow \uparrow Y\)}

The symbol chosen to represent Disclose depends on the current Migration Level.
If \(\square M L<2\), Disclose is represented by the symbol: .
If \(\square M L \geq 2\), Disclose is represented by the symbol: \(\uparrow\).
\(Y\) may be any array. \(R\) is an array. If \(Y\) is non-empty, \(R\) is the value of the first item of \(Y\) taken in ravel order. If \(Y\) is empty, \(R\) is the prototype of \(Y\).

Disclose is the inverse of Enclose. The identity \(R \leftrightarrow \supset \subset R\) holds for all \(R\). Disclose is also referred to as First.

\section*{Examples}

1
\(\supset 1\)
\[
246
\]

2
っ'MONDAY' 'TUESDAY'

MONDAY
\[
\text { د(1 }(23))(4(56))
\]

123
2っ0
0
' ' '

1
\(000^{>1 \downarrow \subset 1, c 2} 3\)

\section*{Divide:}

\section*{\(R \leftarrow X \div Y\)}

Y must be a numeric array. X must be a numeric array. R is the numeric array resulting from \(X\) divided by \(Y\). System variable ZDIV is an implicit argument of Divide.

If CDIV \(=0\) and \(Y=0\) then if \(X=0\), the result of \(X \div Y\) is 1 ; if \(X \neq 0\) then \(X \div Y\) is a DOMAIN ERROR.

If पDIV \(=1\) and \(Y=0\), the result of \(X \div Y\) is 0 for all values of \(X\).

\section*{Examples}
```

 2 0 5\div4 0 2
 0.512.5
3j1 2.5 4j5\div2 1j1 . 2
1.5J0.5 1.25J-1.25 20J25
DDIV <-1
2 0 5\div4 0 0
0.500

```
\(R \leftarrow X \downarrow Y\)
\(Y\) may be any array. \(X\) must be a simple scalar or vector of integers. If \(X\) is a scalar, it is treated as a one-element vector. If \(Y\) is a scalar, it is treated as an array whose shape is \((\rho X) \rho 1\). After any scalar extensions, the shape of \(X\) must be less than or equal to the rank of \(Y\). Any missing trailing items in \(X\) default to 0 .
\(R\) is an array with the same rank as \(Y\) but with elements removed from the vectors along each of the axes of \(Y\). For the Ith axis:
- if \(X[I]\) is positive, all but the first \(X[I]\) elements of the vectors result.
- if \(X[I]\) is negative, all but the last \(X[I]\) elements of the vectors result.

If the magnitude of X [I] exceeds the length of the Ith axis, the result is an empty array with zero length along that axis.

\section*{Examples}
\begin{tabular}{|c|c|}
\hline & \(4 \downarrow\) 'OVERBOARD' \\
\hline \multicolumn{2}{|l|}{BOARD} \\
\hline & -5ね'OVERBOARD' \\
\hline \multicolumn{2}{|l|}{OVER} \\
\hline & \(\rho 10 \downarrow\) 'OVERBOARD' \\
\hline \multirow[t]{2}{*}{0} & \\
\hline & M \\
\hline ONE & \\
\hline \multicolumn{2}{|l|}{FAT} \\
\hline \multirow[t]{2}{*}{FLY} & \\
\hline & \(0-2 \downarrow \mathrm{M}\) \\
\hline 0 & \\
\hline \multicolumn{2}{|l|}{F} \\
\hline \multicolumn{2}{|l|}{F} \\
\hline & \(-2-1 \downarrow M\) \\
\hline \multirow[t]{2}{*}{ON} & \\
\hline & \(1 \downarrow\) M \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { FAT } \\
& \text { FLY }
\end{aligned}
\]} & \\
\hline & M3 \(-234 \rho \square A\) \\
\hline & \(11 \downarrow\) M 3 \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multirow[t]{2}{*}{UVWX} & \\
\hline & -1-1 \(\downarrow\) M 3 \\
\hline EFGH & \\
\hline
\end{tabular}

\section*{Drop with Axes: \\ \(R+X \downarrow[K] Y\)}
\(Y\) may be any non scalar array. \(X\) must be a simple integer scalar or vector. \(K\) is a vector of zero or more axes of Y .
\(R\) is an array of the elements of \(Y\) with the first or last \(X[i]\) elements removed. Elements are removed from the beginning or end of Y according to the sign of \(\mathrm{X}[\mathrm{i}]\).

The rank of \(R\) is the same as the rank of \(Y\) :
\[
\rho \rho R \leftrightarrow \rho \rho Y
\]

The size of each axis of \(R\) is determined by the corresponding element of \(X\) :
\[
(\rho R)[, K] \leftrightarrow O \Gamma(\rho Y)[, K]-I, X
\]

\section*{Examples}


\section*{Enclose:}
\(R+C Y\)

Y may be any array. R is a scalar array whose item is the array Y . If Y is a simple scalar, \(R\) is the simple scalar unchanged. Otherwise, \(R\) has a depth whose magnitude is one greater than the magnitude of the depth of Y .

\section*{Examples}
```

 c1
 1
C'A'
A
c123
123
1 c1, c'CAT'
1 CAT
c2 4\rho_8
1234
5 6 7 8
č0
cc\imath0
cc10
1 0

```

\section*{Enclose with Axes: \\ \(R+c[K] Y\)}

Y may be any array. K is a vector of zero or more axes of Y . R is an array of the elements of \(Y\) enclosed along the axes \(K\). The shape of \(R\) is the shape of \(Y\) with the \(K\) axes removed:
\[
\rho R \leftrightarrow(\rho Y)[(\imath \rho \rho R) \sim K]
\]

The shape of each element of \(R\) is the shape of the \(K^{\prime} t h\) axes of \(Y\) :
\[
\rho \supset R \leftrightarrow(\rho Y)[, K]
\]

\section*{Examples}

Idisplay \(A \leftarrow 234 \rho ' D U C K S W A N B I R D W O R M C A K E S E E D '\)
「 \(\downarrow\) DUCK
SWAN
BIRD
WORM
CAKE
SEED


\section*{Encode:}
\(R \leftarrow X T Y\)
Y must be a simple numeric array. X must be a simple numeric array. R is the numeric array which results from the representation of \(Y\) in the number system defined by \(X\).

The shape of \(R\) is \((\rho X), \rho Y\) (the catenation of the shapes of \(X\) and \(Y\) ).
If \(X\) is a vector or a scalar, the result for each element of \(Y\) is the value of the element expressed in the number system defined by radix \(X\). If \(Y\) is greater than can be expressed in the number system, the result is equal to the representation of the residue \((x / X) \mid Y\). If the first element of \(X\) is 0 , the value will be fully represented.

This function is also known as Representation.

\section*{Examples}

10т5 15125
555
0 10т5 15125
0112
555

If \(X\) is a higher order array, each of the vectors along the first axis of \(X\) is used as the radix vector for each element of \(Y\).

\section*{Examples}
\begin{tabular}{lll} 
& & \\
2 & 0 & \(0^{A}\) \\
2 & 0 & 0 \\
2 & 0 & 0 \\
2 & 0 & 0 \\
2 & 8 & 0 \\
2 & 8 & 0 \\
2 & 8 & 16 \\
2 & 8 & 16
\end{tabular}

Ат 75
000
100
000
000
100
010
114
1311
The example shows binary, octal and hexadecimal representations of the decimal number 75 .

\section*{Examples}
```

 0 1т1.25 10.5
 1 10
0.25 0.5
4 13т13?52
3 1 0 2 3 2 0 1 3 1 2 3 1
12 2 4 12 1 7 6 3 10 1 0 3 8

```

\section*{Enlist: \\ ( \(\square M L \geq 1\) ) \\ \(R+\epsilon Y\)}

Migration level must be such that \(\square M L \geq 1\) (otherwise see "Type:" on page 319).
\(Y\) may be any array, \(R\) is a simple vector created from all the elements of \(Y\) in ravel order.

\section*{Examples}
```

 OML\leftarrow1 \rho Migration level 1
 MAT\leftarrow2 2p'MISS' 'IS' 'SIP' 'PI' \diamond MAT
 MISS
 IS
 SIP PI
 \epsilonMAT
 MISSISSIPPI
M+1 (2 2p2 3 4 5) (6(7 8))
M
1 2 3 6 7 8
4 5
\epsilonM
12345678

```
\(R \leftarrow X=Y\)
Y may be any array. X may be any array. R is Boolean. पCT is an implicit argument of Equal.

If \(X\) and \(Y\) are character, then \(R\) is 1 if they are the same character. If \(X\) is character and \(Y\) is numeric, or vice-versa, then \(R\) is 0 .

If \(X\) and \(Y\) are numeric, then \(R\) is 1 if \(X\) and \(Y\) are within comparison tolerance of each other.

For real numbers \(X\) and \(Y, X\) is considered equal to \(Y\) if \((\mid X-Y)\) is not greater than ПCT×(|X) 「|Y.

For complex numbers \(X=Y\) is 1 if the magnitude of \(X-Y\) does not exceed \(\square C T\) times the larger of the magnitudes of \(X\) and \(Y\); geometrically, \(X=Y\) if the number smaller in magnitude lies on or within a circle centred on the one with larger magnitude, having radius \(\overline{C C T}\) times the larger magnitude.


\section*{Examples}

0100
\(a \leftarrow 2+0 j 1 \times \square C T\)
a
2J1E-14
\(a=2 j .000000000000012 \mathrm{j} .0000000000001\)
10
'CAT' = 'FAT'
011
\({ }^{\prime} C A T '=123\)
000
'CAT'='C' 23
100
पCT-1E-10
\(1=1.000000000001\)
1
\(1=1.0000001\)
0

Excluding:
\(R \leftarrow X \sim Y\)
\(X\) must be a scalar or vector. \(R\) is a vector of the elements of \(X\) excluding those elements which occur in \(Y\) taken in the order in which they occur in \(X\).

Elements of \(X\) and \(Y\) are considered the same if \(X \equiv Y\) returns 1 for those elements.
DCT is an implicit argument of Excluding. Excluding is also known as Without.

\section*{Examples}

HLL
'HELLO'~'GOODBYE'
'MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY' MONDAY WEDNESDAY
\[
5 \quad 10 \quad 15 \sim 210
\]

15
For performance information, see "Search Functions and Hash Tables" on page 108.

\section*{Execute (Monadic):}
\(R \nleftarrow \Phi Y\)
\(Y\) must be a simple character scalar or vector. If \(Y\) is an empty vector, it is treated as an empty character vector. Y is taken to be an APL statement to be executed. R is the result of the last-executed expression. If the expression has no value, then \(\Phi Y\) has no value. If \(Y\) is an empty vector or a vector containing only blanks, then \(\pm Y\) has no value.

If \(Y\) contains a branch expression which evaluates to a non-empty result, \(R\) does not yield a result. Instead, the branch is effected in the environment from which the Execute was invoked.

\section*{Examples}
```

 &'2+2'
 4
4=\mp@subsup{\Phi}{}{\prime}}2+2
1
A
1 2 3
4 5
\&'A'
123
4 5
\Phi}A\leftarrow2\mp@subsup{|}{}{-1}1\uparrow\squareTS \diamond->0\rho\ddot{~}A\diamond\mp@subsup{A}{}{\prime
0
A
0

```

\section*{Execute (Dyadic):}
\(Y\) must be a simple character scalar or vector. If \(Y\) is an empty vector, it is treated as an empty character vector. \(X\) must be a namespace reference or a simple character scalar or vector representing the name of a namespace. Y is then taken to be an APL statement to be executed in namespace \(X\). \(R\) is the result of the last-executed expression. If the expression has no value, then \(X \pm Y\) has no value.

\section*{Example}

पSE \(\pm\) ' DNL 9'
\(R+X \backslash[K] Y\)
Y may be any array. X is a simple integer scalar or vector. The axis specification is optional. If present, K must be a simple integer scalar or unit vector. The value of K must be an axis of \(Y\). If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow X+Y\) implies the first axis. If \(Y\) is a scalar, it is treated as a one-element vector.

If \(Y\) has length 1 along the \(\mathrm{K}^{\text {th }}\) (or implied) axis, it is extended along that axis to match the number of positive elements in \(X\). Otherwise, the number of positive elements in \(X\) must be the length of the \(K^{\text {th }}\) (or implied) axis of \(Y\).
\(R\) is composed from the sub-arrays along the \(K^{\text {th }}\) axis of \(Y\). If \(X[I]\) (an element of \(X\) ) is the \(J\) th positive element in \(X\), then the \(J^{\text {th }}\) sub-array along the \(K^{\text {th }}\) axis of \(Y\) is replicated X[I] times. If X [ I ] is negative, then a sub-array of fill elements of \(Y\) \((c \in \supset Y)\) is replicated \(\mid X[I]\) times and inserted in relative order along the \(K^{\text {th }}\) axis of the result. If \(X[I]\) is zero, it is treated as the value \({ }^{-1}\). The shape of \(R\) is the shape of \(Y\) except that the length of the \(\mathrm{K}^{\text {th }}\) axis is \(+/ 1\lceil\mid \mathrm{X}\).

\section*{Examples}
```

 0\\imath0
 0
1-2 3-4 5\'A'
A AAA AAAAA
M
123
4 6
1 -2 2 0 1\M
1002 2 0 3
40055 0 6
1 0 1+M
123
0 0 0
4 5

 1 0 1\[1]M
 123
0 0
4 5
1 -2 1\(1 2)((3 4 5)
120}0000034

```

\section*{Expand First:}
\(R \leftarrow X+Y\)
The form \(R \leftarrow X+Y\) implies expansion along the first axis whereas the form \(R \leftarrow X \backslash Y\) implies expansion along the last axis (columns). See "Expand:" above.

\section*{Exponential:}

R+*Y
Y must be numeric. R is numeric and is the Y th power of \(e\), the base of natural \(\log\) arithms.

\section*{Example}
* 10
2.7182818281
*0j1 1j2
0.5403023059 J 0.8414709848 -1.131204384J2.471726672

1+*00j1 ค Euler Identity
0
Factorial:
\(R+!Y\)
\(Y\) must be numeric excluding negative integers. \(R\) is numeric. \(R\) is the product of the first \(Y\) integers for positive integer values of \(Y\). For non-integral values of \(Y,!Y\) is equivalent to the gamma function of \(\mathrm{Y}+1\).

\section*{Examples}
\(!12345\)
12624120
!-1.5 \(0 \quad 1.5 \quad 3.3\)
\(-3.54490770211 .3293403888 .85534336\)
! 0 j1 1j2
\(0.4980156681 \mathrm{~J}-0.15494982830 .1122942423 \mathrm{~J} 0.3236128855\)

\section*{\(R+X \subseteq Y\)}
\(X\) and \(Y\) may be any arrays. \(R\) is a simple Boolean array the same shape as \(Y\) which identifies occurrences of \(X\) within \(Y\).

If the rank of \(X\) is smaller than the rank of \(Y, X\) is treated as if it were the same rank with leading axes of size 1 . For example a vector is treated as a 1 -row matrix.

If the rank of \(X\) is larger than the rank of \(Y\), no occurrences of \(X\) are found in \(Y\).
—CT and पDCT are implicit arguments to Find.

\section*{Examples}
'AN' \(\underline{\epsilon}\) 'BANANA'
010100
'ANA' \(\epsilon^{\prime}\) BANANA'
010100
'BIRDS' 'NEST' \(\epsilon^{\prime} B I R D S ' ~ ' N E S T ' ~ ' S O U P ' ~\)
100
MAT
IS YOU IS
OR IS YOU
ISN'T
'IS' \(\ln\) MAT
100000010
000100000
100000000
'IS YOU'EMAT
100000000
000100000
000000000
First:

\section*{(DML)} \(R \nrightarrow Y\) or \(R+A Y\)

See function "Disclose:" on page 244.
\(Y\) must be numeric.
For real numbers, \(R\) is the largest integer value less than or equal to \(Y\) within the comparison tolerance DCT.

\section*{Examples}
```

 L-2.3 0.11003 .3
 -3 01003
L0.5 + 0.40 .50 .6
011

```

For complex numbers, \(R\) depends on the relationship between the real and imaginary parts of the numbers in \(Y\).
```

 L1j3.2 3.3j2.5 -3.3j-2.5
 1J3 3J2 -3J-3

```

The following (deliberately) simple function illustrates one way to express the rules for evaluating complex Floor.
[1] \(\quad\) Complex floor of scalar complex number (a+ib)
[2] a b<9 110cpxs
[3] :If \(1>(a-L a)+b-L b\)
[4] \(\quad f(\leftarrow(L a)+0 J 1 \times L b\)
[5] :Else
[6] :If \((a-L a)<b-\lfloor b\)
[7] \(\quad f l \leftarrow(L a)+0 J 1 \times 1+L b\)
[8]
[9] \(\quad f l \leftarrow(1+L a)+0 J 1 \times L b\)
[10] :EndIf
[11] :EndIf
\(\nabla\)
CpxFloor"1j3.2 3.3j2.5-3.3j-2.5
1J3 3J2 -3J-3
पCT is an implicit argument of Floor.

\section*{Format (Monadic):}
\(R \leftarrow \Phi Y\)
Y may be any array. R is a simple character array which will display identically to the display produced by Y . The result is independent of P PW . If Y is a simple character array, then \(R\) is Y .

\section*{Example}
```

 +B\leftarrow\PhiA\leftarrow2 6\rho'HELLO PEOPLE'
    ```
HELLO
PEOPLE
    \(B \equiv A\)

1
If \(Y\) is a simple numeric scalar, then \(R\) is a vector containing the formatted number without any spaces. A floating point number is formatted according to the system variable DPP. DPP is ignored when formatting integers.

\section*{Examples}
```

 \squarePP}\leftarrow
 \rhoC}\leftarrow\Phi\imath
 0
\rhoC}\leftarrow\Phi1
2
C
1 0
\rhoC}\leftarrow\$12.3
5
C
12.34
\mp123456789
123456789
\$123.456789
123.46
Scaled notation is used if the magnitude of the non-integer number is too large to represent with पPP significant digits or if the number requires more than five leading zeroes after the decimal point.

```

\section*{Examples}

Ф123456.7
1.2346E5
\(\Phi 0.0000001234\)
\(1.234 E^{-7}\)
If \(Y\) is a simple numeric vector, then \(R\) is a character vector in which each element of \(Y\) is independently formatted with a single separating space between formatted elements.

\section*{Example}
```

 \rhoC\leftarrow\Phi-123456 1 22.5 -0.000000667 5.00001
    ```
```

 C
 -1.2346E5 1 22.5 -6.67E-7 5

```

If \(Y\) is a simple numeric array rank higher than one, \(R\) is a character array with the same shape as \(Y\) except that the last dimension of \(Y\) is determined by the length of the formatted data. The format width is determined independently for each column of Y , such that:
a. the decimal points for floating point or scaled formats are aligned.
b. the E characters for scaled formats are aligned, with trailing zeros added to the mantissae if necessary.
c. integer formats are aligned to the left of the decimal point column, if any, or right-adjusted in the field otherwise.
d. each formatted column is separated from its neighbours by a single blank column.
e. the exponent values in scaled formats are left-adjusted to remove any blanks.

\section*{Examples}
\[
C \leftarrow 22-0.000000123 \quad 2.34-212123456 \quad 6.000020
\]
\[
\rho C \leftarrow \Phi 223 \rho C
\]

2229
\[
\begin{aligned}
& \text { C } \\
& 22 \quad-1.2300 E^{-7} \quad 2.3400 \mathrm{EO} \\
& \text {-212 } 1.2346 E 5 \quad 6.0000 E 0 \\
& 0 \quad 2.2000 \mathrm{E}_{1} \quad-1.2300 \mathrm{E}^{-7} \\
& 2.34-2.1200 \mathrm{E} 2 \text { 1.2346E5 }
\end{aligned}
\]

If \(Y\) is non-simple, and all items of \(Y\) at any depth are scalars or vectors, then \(R\) is a vector.
```

Examples
B\leftarrow\PhiA\leftarrow'ABC' 100 (1 2 (3 4 5)) 10
\rhoA
4
\equivA
-3
pB
26
\#B
1
ABC llllllll
ABC 100 14 2 3 4 5 10

```

By replacing spaces with \(\wedge\), it is clearer to see how the result of \(\Phi\) is formed:
```

^ABC^^100^^1^2^^3^4^5^^^^10

```

If \(Y\) is non-simple, and all items of \(Y\) at any depth are not scalars, then \(R\) is a matrix.

\section*{Example}
\(D \leftarrow \Phi C \leftarrow 1\) 'AB' (2 2p1+ 24 ) (2 2 3p'CDEFGHIJKLMN')
```

 C
 1 AB 2 3 CDE
4 FGH

```
        IJK
        LMN
        \(\rho C\)
4
三C
-2
    D
1 AB 23 \begin{tabular}{lll} 
& 3 & \(C D E\) \\
& & 5 \\
\hline
\end{tabular}
        45 FGH
            IJK
            LMN
        pD
516
    三D
1

By replacing spaces with \(\wedge\), it is clearer to see how the result of \(\Phi\) is formed:
```

1^^AB^^^2^3^^CDE^
^^^^^^^^^4^5^^FGH^
^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^IJK^
^^^^^^^^^^^^^^LMN^

```

DPP is an implicit argument of Monadic Format.

\section*{Format (Dyadic): \(R+X \Phi Y\)}
\(Y\) must be a simple real (non-complex) numeric array. \(X\) must be a simple integer scalar or vector. \(R\) is a character array displaying the array Y according to the specification \(X\). \(R\) has rank \(1\left\lceil\rho \rho Y\right.\) and \(-1 \downarrow \rho R\) is \({ }^{-1} \downarrow \rho Y\). If any element of \(Y\) is complex, dyadic \(\Phi\) reports a DOMAIN ERROR.

Conformability requires that if \(X\) has more than two elements, then \(\rho X\) must be \(2 x^{-1} 1 \uparrow \rho Y\). If \(X\) contains one element, it is extended to \(\left(2 x^{-} 1 \uparrow \rho Y\right) \rho 0, X\). If \(X\) contains 2 elements, it is extended to ( \(2 x^{-} 1 \uparrow \rho Y\) ) \(\rho X\).
\(X\) specifies two numbers (possibly after extension) for each column in \(Y\). For this purpose, scalar \(Y\) is treated as a one-element vector. Each pair of numbers in \(X\) identifies a format width \((W)\) and a format precision ( P ).

If P is 0 , the column is to be formatted as integers.

\section*{Examples}


If P is positive, the format is floating point with P significant digits to be displayed after the decimal point.

\section*{Example}
\[
\begin{array}{lllll}
4 & 1 \Phi 1.1 & 2-4 & 2.547
\end{array}
\]
\[
1.12 .0-4.02 .5
\]

If P is negative, scaled format is used with | P digits in the mantissa.

\section*{Example}
```

 7 -3क5 15 155 1555
 5.00EO 1.50E1 1.55E2 1.56E3

```

If \(W\) is 0 or absent, then the width of the corresponding columns of \(R\) are determined by the maximum width required by any element in the corresponding columns of Y , plus one separating space.

\section*{Example}
\[
\begin{array}{rrrrrr}
3 \Phi 2 & 3 \rho 10 & 15.2346 & -17.1 & 2 & 3
\end{array}
\]

If a formatted element exceeds its specified field width when \(W>0\), the field width for that element is filled with asterisks.

\section*{Example}

3062 क \(32 \rho 10.115100122 .3571011110 .1\)
1015.00
*** 22.36
101******
If the format precision exceeds the internal precision, low order digits are replaced by the symbol '_'.

\section*{Example}
\[
26 \Phi 2 * 100
\]

1267650600228229 \(\qquad\) -

م26ヵ2*100
59
\(020 \mp \div 3\)
0.3333333333333333
\(0-20 \mp \div 3\)
3.333333333333333 \(\qquad\) \(E^{-1}\)

The shape of \(R\) is the same as the shape of \(Y\) except that the last dimension of \(Y\) is the sum of the field widths specified in \(X\) or deduced by the function. If \(Y\) is a scalar, the shape of \(R\) is the field width.

2320

\section*{Grade Down (Monadic):}
\(R+\phi\)
\(Y\) must be a simple character or simple numeric array of rank greater than \(0 . R\) is an integer vector being the permutation of \(\imath 1 \uparrow \rho Y\) that places the sub-arrays of \(Y\) along the first axis in descending order. The indices of any set of identical sub-arrays in \(Y\) occur in \(R\) in ascending order.

If \(Y\) is a numeric array of rank greater than 1 , the elements in each of the sub-arrays along the first axis are compared in ravel order with greatest weight being given to the first element and least weight being given to the last element.

\section*{Example}
\begin{tabular}{llll} 
& & & \(M\) \\
2 & 5 & 3 & 2 \\
3 & 4 & 1 & 1 \\
2 & 5 & 4 & 5 \\
2 & 5 & 3 & 2 \\
2 & 5 & 3 & 4
\end{tabular}
\(\downarrow \mathrm{M}\)
23514
M[中M;]
\(\begin{array}{lll}3 & 4 & 1\end{array}\)
2545
2534
2532
2532
If \(Y\) is a character array, the implied collating sequence is the numerical order of the corresponding Unicode code points (Unicode Edition) or the ordering of characters in पAV (Classic Edition).

DIO is an implicit argument of Grade Down.

Note that character arrays sort differently in the Unicode and Classic Editions.

\section*{Example}

M
Goldilocks
porridge
Porridge
3 bears
\begin{tabular}{|c|c|}
\hline Unicode Edition & Classic Edition \\
\hline \[
\begin{array}{llll} 
& & & \\
\hline 2 & 3 & 1 & 4
\end{array}
\] & \begin{tabular}{lllll}
3 & 1 & 4 & \\
\hline
\end{tabular} \\
\hline \(\quad \mathrm{M}[\$ \mathrm{M} ;]\)
porridge
Porridge
Goldilocks
3 bears & \begin{tabular}{l}
\[
M[\nmid M ;]
\] \\
Porridge Goldilocks 3 bears porridge
\end{tabular} \\
\hline
\end{tabular}

\section*{Grade Down (Dyadic):}

Y must be a simple character array of rank greater than 0 . X must be a simple character array of rank 1 or greater. \(R\) is a simple integer vector of shape \(1 \uparrow \rho Y\) containing the permutation of \(\tau 1 \uparrow \rho Y\) that places the sub-arrays of \(Y\) along the first axis in descending order according to the collation sequence \(X\). The indices of any set of identical sub-arrays in \(Y\) occur in \(R\) in ascending order.

If X is a vector, the following identity holds:
\[
X \forall Y \leftrightarrow \forall X_{2} Y
\]

A left argument of rank greater than 1 allows successive resolution of duplicate orderings in the following way.

Starting with the last axis:
- The characters in the right argument are located along the current axis of the left argument. The position of the first occurrence gives the ordering value of the character.
- If a character occurs more than once in the left argument its lowest position along the current axis is used.
- If a character of the right argument does not occur in the left argument, the ordering value is one more than the maximum index of the current axis - as with dyadic iota.

The process is repeated using each axis in turn, from the last to the first, resolving duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1 :

\section*{Left argument:}
abc
ABA

Right argument:
ab
ac
Aa
Ac

Along last axis:
\begin{tabular}{lllll} 
Character: & Value: & Ordering: \\
ab & 1 & 2 & 3 & \\
ac & 1 & 3 & \(=1\) & <-duplicate ordering with \\
Aa & 1 & 1 & 4 & \\
Ac & 1 & 3 & \(=1\) & <-respect to last axis.
\end{tabular}

Duplicates exist, so resolve these with respect to the first axis:
\begin{tabular}{llll} 
Character: & Value: & Ordering: \\
ac & 1 & 1 & 2 \\
Ac & 2 & 1 & 1
\end{tabular}

So the final row ordering is:
\begin{tabular}{ll}
ab & 3 \\
ac & 2 \\
Aa & 4 \\
Ac & 1
\end{tabular}

That is, the order of rows is 4213 which corresponds to a descending row sort of:
\begin{tabular}{ll} 
Ac & 1 \\
ac & 2 \\
ab & 3 \\
Aa & 4
\end{tabular}

\section*{Examples}
```

 pS1
 2 27
S1
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
S2
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
S3
AaBbCcDdEeFfGgHhIiJjKkLIMmNnOoPpQqRrSsTtUuVvWwXxYyZz
S4
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

```

The following results are tabulated for comparison：
\begin{tabular}{|c|c|c|c|c|}
\hline X & X［S1巾X；］ & X［S2巾 \({ }^{\text {；}}\) ］ & X［S3ャX；］ & X［S4巾 \({ }^{\text {P }}\) ］ \\
\hline FIRst & TAPE & rat & TAPE & TAPE \\
\hline TAP & TAP & fIRST & TAP & TAP \\
\hline RATE & RATE & TAPE & rAT & RATE \\
\hline FiRST & rAT & TAP & RATE & rAT \\
\hline FIRST & RAT & RATE & RAT & RAT \\
\hline rAT & MAT & RAT & MAT & MAT \\
\hline fIRST & first & MAT & f IRST & FIRsT \\
\hline TAPE & FiRST & FiRST & FiRST & FiRST \\
\hline MAT & FIRsT & FIRsT & FIRsT & FIRST \\
\hline RAT & FIRST & FIRST & FIRST & fIRST \\
\hline
\end{tabular}

DIO is an implicit argument of Grade Down．

\section*{Grade Up（Monadic）：}
\(Y\) must be a simple character or simple numeric array of rank greater than \(0 . R\) is an integer vector being the permutation of \(\tau 1 \uparrow \rho Y\) that places the sub－arrays along the first axis in ascending order．

If \(Y\) is a numeric array of rank greater than 1 ，the elements in each of the sub－arrays along the first axis are compared in ravel order with greatest weight being given to the first element and least weight being given to the last element．

\section*{Examples}


If \(Y\) is a character array, the implied collating sequence is the numerical order of the corresponding Unicode code points (Unicode Edition) or the ordering of characters in पAV (Classic Edition).

DIO is an implicit argument of Grade Up
Note that character arrays sort differently in the Unicode and Classic Editions.
```

 M
 Goldilocks
porridge
Porridge
3 bears

```
\begin{tabular}{|c|c|}
\hline Unicode Edition & Classic Edition \\
\hline \[
\begin{array}{|llll}
\hline & & & 4 M \\
4 & 1 & 3 & 2
\end{array}
\] & \(2414{ }^{2} 4{ }^{4}\) \\
\hline ```
    M[4M;]
3 bears
Goldilocks
Porridge
porridge
``` & ```
 M[4M;]
porridge
3 bears
Goldilocks
Porridge
``` \\
\hline
\end{tabular}

\section*{Grade Up (Dyadic):}
\(R+X 4 Y\)
Y must be a simple character array of rank greater than 0 . X must be a simple character array of rank 1 or greater. \(R\) is a simple integer vector being the permutation of \(\tau 1 \uparrow \rho Y\) that places the sub-arrays of \(Y\) along the first axis in ascending order according to the collation sequence \(X\).

If X is a vector, the following identity holds:
\[
X \Delta Y \leftrightarrow \Delta X_{2} Y
\]

If \(X\) is a higher order array, each axis of \(X\) represents a grading attribute in increasing order of importance. If a character is repeated in X , it is treated as though it were located at the position in the array determined by the lowest index in each axis for all occurrences of the character. The character has the same weighting as the character located at the derived position in \(X\).

\section*{Examples}
(2 \(\left.2 \rho^{\prime} A B B A^{\prime}\right) ~ \& ~ ' A B^{\prime}[? 52 \rho 2] ~ A ~ A ~ a n d ~ B ~ a r e ~\) equivalent 12345

Jdisplay \(A+2\) 140' abcdegiklmnrt ABCDEGIKLMNRT'
```

abcdegiklmnrt

```
ABCDEGIKLMNRT

]display M (M[(,A) \(4 M ;])(M[(, \phi A) 4 M ;])(M[A \Delta M ;])\)
\begin{tabular}{|l|}
\hline Ab \\
\(A B\) \\
aba \\
ABA \\
abaca \\
abecedarian \\
Abelian \\
black \\
blackball \\
black belt \\
blacking \\
Black Mass
\end{tabular}
\begin{tabular}{|l|}
\hline laba \\
labaca \\
abecedarian \\
black \\
black belt \\
blackball \\
blacking \\
Ab \\
Abelian \\
AB \\
ABA \\
Black Mass \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline laba \\
labaca \\
abecedarian \\
Ab \\
Abelian \\
AB \\
ABA \\
black \\
black belt \\
blackball \\
blacking \\
Black Mass \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline\(A b\) \\
AB \\
aba \\
ABA \\
abaca \\
abecedarian \\
Abelian \\
black \\
black belt \\
Black Mass \\
blackball \\
blacking
\end{tabular}

Greater: \(R+X>Y\)
\(Y\) must be numeric. \(X\) must be numeric. \(R\) is Boolean. \(R\) is 1 if \(X\) is greater than \(Y\) and \(X=Y\) is 0 . Otherwise \(R\) is 0 .

पCT is an implicit argument of Greater.

\section*{Examples}
```

 1 3 4 5 > 2
 0 0 1 1 1
 DCT +1E-10
 1 1.00000000001 1.000000001 > 1
 O 1
    ```

\section*{Greater Or Equal:}
\(R+X \geq Y\)
\(Y\) must be numeric. \(X\) must be numeric. \(R\) is Boolean. \(R\) is 1 if \(X\) is greater than \(Y\) or \(X=Y\). Otherwise \(R\) is 0 .

DCT is an implicit argument of Greater Or Equal.

\section*{Examples}


Identity:

\(Y\) may be any array. The result \(R\) is the argument \(Y\).

\section*{Example}
\[
\begin{array}{lllll} 
& \vdash^{\prime} a b c c^{\prime} & 1 & 2 & 3 \\
123
\end{array}
\]
\(R+\{X\} Q Y\)

\section*{Dyadic case}
\(X\) must be a scalar or vector of depth \(\leq 2\) of integers each \(\geq\) IIO. \(Y\) may be any array. In general, the result \(R\) is similar to that obtained by square-bracket indexing in that:
\[
(\mathrm{I} \mathrm{~J} \ldots \mathrm{C} \text { Y) } \equiv \mathrm{Y}[\mathrm{I} ; \mathrm{J} ; \ldots]
\]

The length of left argument \(X\) must be less than or equal to the rank of right argument \(Y\). Any missing trailing items of \(X\) default to the index vector of the corresponding axis of \(Y\).

Note that in common with square-bracket indexing, items of the left argument \(X\) may be of any rank and that the shape of the result is the concatenation of the shapes of the items of the left argument:
\[
(\rho X \square Y) \equiv \uparrow, / \rho \cdot{ }^{\prime \prime} X
\]

Index is sometimes referred to as squad indexing.
Note that index may be used with selective specification.
DIO is an implicit argument of index.

\section*{Examples}
```

 DIO -1
 VEC \(\leftarrow 111222333444\)
 3]VEC
 333
(c4 3)]VEC
444333
(c2 $3 \rho 314123$) IVEC
333111444
111222333
$\square+M A T+10 \perp$ " 234
$\begin{array}{llll}11 & 12 & 13 & 14\end{array}$
$\begin{array}{lll}21 & 22 & 23 \\ 24\end{array}$
31323334
2 1DMAT
21
2DMAT
21222324
3(2 1) DMAT
3231
(2 3) 1 DMAT
2131
(2 3)(,1)]MAT
21
31

```

```

 \(\rho \theta\) ӨПMAT
 00
(3(2 1) DMAT) $+0 \diamond$ MAT \quad A Selective assignment.
11121314
21222324
$0 \quad 03334$

```

\section*{Monadic case}

If \(Y\) is an array, \(Y\) is returned.
If \(Y\) is a ref to an instance of a Class with a Default property, all elements of the Default property are returned. For example, if I tem is the default property of MyClass , and imc is an Instance of MyClass , then by definition:
imc.Item三】imc
NONCE ERROR is reported if the Default Property is Keyed, because in this case APL has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the corresponding PropertyGet and PropertySet functions. Furthermore, if there is a sequence of primitive functions to the left of the Index function, that operate on the index set itself (functions such as dyadic \(\rho, \uparrow, \downarrow, \supset\) ) as opposed to functions that operate on the values of the index set (functions such as,\(+\left\lceil, L, \rho^{*}\right.\) ), calls to the PropertyGet and PropertySet functions are deferred until the required index set has been completely determined. The full set of functions that cause deferral of calls to the PropertyGet and PropertySet functions is the same as the set of functions that applies to selective specification.

If for example, CompFile is an Instance of a Class with a Default Numbered Property, the expression:
\[
1 \uparrow \phi \square \text { CompFile }
\]
would only call the PropertyGet function (for CompFile) once, to get the value of the last element.

Note that similarly, the expression
10000مDCompFile
would call the PropertyGet function 10000 times, on repeated indices if CompFile has less than 10000 elements. The deferral of access function calls is intended to be an optimisation, but can have the opposite effect. You can avoid unnecessary repetitive calls by assigning the result of \(\square\) to a temporary variable.

\section*{Index with Axes: \\ \(R+\{X\}[K] Y\)}
\(X\) must be a scalar or vector of depth \(\leq 2\), of integers each \(\geq \square I O\). \(Y\) may be any array.
\(K\) is a simple scalar or vector specifying axes of \(Y\). The length of \(K\) must be the same as the length of \(X\) :
\[
(\rho, X) \equiv \rho, K
\]

In general, the result \(R\) is similar to that obtained by square-bracket indexing with elided subscripts. Items of K distribute items of X along the axes of Y . For example:
\[
I \quad J \quad\left[\begin{array}{ll}
1 & 3]
\end{array} \quad \leftrightarrow \quad Y[I ; ; J]\right.
\]

Note that index with axis may be used with selective specification. DIO is an implicit argument of index with axis.

\section*{Examples}

DIO -1
\(\square+C U B E+10 \perp{ }^{*}\) 2 234
111112113114
121122123124
131132133134
211212213214
221222223224
231232233234
2[[1]CUBE
211212213214
221222223224
231232233234
2[[3]CUBE
112122132
212222232
\[
\operatorname{CUBE}[; ; 2] \equiv 2 \square[3] C U B E
\]

1
(1 3) 4 [[2 3 3]CUBE
114134
214234
CUBE[;1 3;4] \(\equiv\left(\begin{array}{ll}1 & 3\end{array}\right) 4\left[\begin{array}{ll}2 & 3\end{array}\right]\) CUBE
```

 (2(1 3)][1 3]CUBE) <0 \diamond CUBE ค Selective assignment.
 111112113114
121 122 123 124
131 132 133 134
O 212 0 214
0 222 0 224
O 232 0 234

```

\section*{Index Generator:} \(R+2 Y\)
\(Y\) must be a simple scalar or vector array of non-negative numbers. \(R\) is a numeric array composed of the set of all possible coordinates of an array of shape \(Y\). The shape of \(R\) is \(Y\) and each element of \(R\) occurs in its self-indexing position in \(R\). In particular, the following identity holds:
\[
\imath Y \leftrightarrow(\imath Y)[\imath Y]
\]

DIO is an implicit argument of Index Generator. This function is also known as Interval.

\section*{Examples}

DIO
1
pıO
0
25

12345
223
\(\begin{array}{llllll}1 & 1 & 1 & 2 & 3\end{array}\)
212223
\(+A \leftarrow 24 \rho ' M A I N E X I T '\)
MAIN
EXIT
\(A[\imath \rho A]\)
MAIN
EXIT
```

 DIO<0
 2
 01234
\imath2 3
0 0 0 1 0 2
1 0 1 1 1 2
A[r\rhoA]
MAIN
EXIT

```
Index Of:
\(R+X 2 Y\)
\(Y\) may be any array. \(X\) may be any vector. \(R\) is a simple integer array with the same shape as \(Y\) identifying where elements of \(Y\) are first found in \(X\). If an element of \(Y\) cannot be found in \(X\), then the corresponding element of \(R\) will be \(\square I O+\rho X\).

Elements of \(X\) and \(Y\) are considered the same if \(X \equiv Y\) returns 1 for those elements.
DIO and पCT are implicit arguments of Index Of.

\section*{Examples}
```

 DIO<1
 24 3 1 4r1 2 3 4 5
 41326
'CAT' 'DOG' 'MOUSE'\imath'DOG' 'BIRD'
24

```

For performance information, see "Search Functions and Hash Tables" on page 108.

\section*{Indexing:}
\(R+X[Y]\)
\(X\) may be any array. \(Y\) must be a valid index specification. \(R\) is an array composed of elements indexed from \(X\) and the shape of \(X\) is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.
DIO is an implicit argument of Indexing.
Three forms of indexing are permitted. The form used is determined by context.

\section*{Simple Indexing}

For vector \(\mathrm{X}, \mathrm{Y}\) is a simple integer array composed of items from the set \(\imath \rho \mathrm{X}\).
\(R\) consists of elements selected according to index positions in \(Y\). \(R\) has the same shape as Y .

\section*{Examples}
\(A \leftarrow 10 \quad 20 \quad 30 \quad 40 \quad 50\)
A[ 2 3p1 \(\left.1 \begin{array}{lllll} & 1 & 2 & 2 & 2\end{array}\right]\)
101010
202020
A[3]
30
'ONE' 'TWO' 'THREE'[2]
TWO
For matrix \(X, Y\) is composed of two simple integer arrays separated by the semicolon character (;). The arrays select indices from the rows and columns of \(X\) respectively.

\section*{Examples}
\(+M+24 \rho 10 \times 28\)
10203040
50607080
M[2;3]

For higher order array \(X, Y\) is composed of a simple integer array for each axis of \(X\) with adjacent arrays separated by a single semicolon character (;). The arrays select indices from the respective axes of X , taken in row-major order.

\section*{Examples}
\begin{tabular}{|c|c|c|}
\hline & \(1-A+2 \quad 3\) & \(4 \rho 10 \times 24\) \\
\hline 10 & 2030 & 40 \\
\hline 50 & 6070 & 80 \\
\hline 90 & 1001101 & 120 \\
\hline 130 & 1401501 & 160 \\
\hline 170 & 1801902 & 200 \\
\hline 210 & 2202302 & 240 \\
\hline \(10 \mathrm{~A}[1 ; 1 ; 1]\) & \multicolumn{2}{|l|}{\(\mathrm{A}[1 ; 1 ; 1]\)} \\
\hline \multicolumn{3}{|r|}{A[2;3 2; 4 1]} \\
\hline 240 & 210 & \\
\hline 200 & 170 & \\
\hline
\end{tabular}

If an indexing array is omitted for the Kth axis, the index vector \(\imath(\rho X)[K]\) is assumed for that axis.

\section*{Examples}


\section*{Choose Indexing}

The index specification \(Y\) is a non-simple array. Each item identifies a single element of \(X\) by a set of indices with one element per axis of \(X\) in row-major order.

\section*{Examples}
```

 M
 10 20 30 40
50 60 70 80
M[lll
2 0
M[[2 2pc2 4]
80 80
80 80
M[(2 1)(1 2)]
50 20

```

A scalar may be indexed by the enclosed empty vector:
```

 S<'Z'
 S[3\rhoс\imath0]

```
ZZZ

Simple and Choose indexing are indistinguishable for vector X :
\[
V+10 \quad 20 \quad 30 \quad 40
\]
\[
\mathrm{V}[c 2]
\]

20
c2
2
V[2]

\section*{Reach Indexing}

The index specification \(Y\) is a non-simple integer array, each of whose items reach down to a nested element of \(X\). The items of an item of \(Y\) are simple vectors (or scalars) forming sets of indices that index arrays at successive levels of \(X\) starting at the top-most level. A set of indices has one element per axis at the respective level of nesting of \(X\) in row-major order.

\section*{Examples}

G↔('ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)
G -2 3pG,('MNO' 5)('PQR' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6
\(G\left[((12) 1)\left(\left(\begin{array}{ll}2 & 3\end{array}\right)\right]\right.\)
DEF
6
\(\left.G\left[\begin{array}{ll}2 & 2 \rho c(2\end{array} 2\right) 2\right]\)
55
55
ABC
\(G\left[\begin{array}{ll}c c 1 & 1\end{array}\right]\)
ABC 1

ABC
\(\mathrm{G}\left[\begin{array}{ll}\mathrm{c} & 1\end{array}\right]\)
1
\(V \leftarrow, G\)
\(A B C \quad \begin{aligned} & V[c c 1]\end{aligned}\)
ABC \(\quad \begin{array}{r}\mathrm{V}[ \\ 1\end{array}\)
V[1]
\(A B C \quad 1\)
\(R \leftarrow X \cap Y\)
\(Y\) must be a scalar or vector. \(X\) must be a scalar or vector. A scalar \(X\) or \(Y\) is treated as a one-element vector. \(R\) is a vector composed of items occurring in both \(X\) and \(Y\) in the order of occurrence in \(X\). If an item is repeated in \(X\) and also occurs in \(Y\), the item is also repeated in R .

Items in \(X\) and \(Y\) are considered the same if \(X \equiv Y\) returns 1 for those items.
पCT is an implicit argument of Intersection.

\section*{Examples}
'ABRA' \({ }^{\prime}\) 'CAR'
ARA
1 'PLUS' 2 ก 25
12
For performance information, see "Search Functions and Hash Tables" on page 108.
\(R+X \rightarrow Y\)
\(X\) and \(Y\) may be any arrays.
The result \(R\) is the left argument \(X\).

\section*{Example}
\[
42 \nmid c a b c ' 123
\]

42
Note that when \(\dashv\) is applied using reduction, the derived function selects the first sub-array of the array along the specified dimension. This is implemented as an idiom.

\section*{Examples}
\(-1 / 1 \quad 23\)
1
mat+个'scent' 'canoe' 'arson' 'rouse' 'fleet' -rmat a first row
scent
-1/mat \(\rho\) first column
scarf
-1/[2]2 3 4pr24 ค first row from each plane
\(1 \quad 2 \quad 3 \quad 4\)
13141516
Similarly, with expansion:
```

\rightarrow-mat

```
sssss
ccccc
aaaaa rrrrr fffff
```

Htmat

```
scent
scent
scent
scent scent
\(R+X<Y\)
\(Y\) may be any numeric array. \(X\) may be any numeric array. \(R\) is Boolean. \(R\) is 1 if \(X\) is less than \(Y\) and \(X=Y\) is 0 . Otherwise \(R\) is 0 .

DCT is an implicit argument of Less.

\section*{Examples}
```

 (2 4) (6 8 10) < 6
 11000
 \(\square C T \leftarrow 1 E^{-10}\)
 \(10.999999999990 .9999999999<1\)
 001
    ```
\(Y\) may be any numeric array. \(X\) may be any numeric array. \(R\) is Boolean. \(R\) is 1 if \(X\) is less than \(Y\) or \(X=Y\). Otherwise \(R\) is 0 .

पCT is an implicit argument of Less Or Equal.

\section*{Examples}
```

 \(246810 \leq 6\)
 11100
$\square C T \leftarrow 1 E^{-10}$
$11.000000000011 .00000001 \leq 1$
110

```

\section*{Logarithm:}
\(Y\) must be a positive numeric array. \(X\) must be a positive numeric array. \(X\) cannot be 1 unless \(Y\) is also 1. \(R\) is the base \(X\) logarithm of \(Y\).
Note that Logarithm (dyadic \(\otimes\) ) is defined in terms of Natural Logarithm (monadic \(\otimes\) ) as:
\[
X \oplus Y \leftrightarrow(\oplus Y) \div \oplus X
\]

\section*{Examples}
\(10 \otimes 1002\)
20.3010299957
\(210 \oplus 0 \mathrm{~J} 1 \quad 1 \mathrm{~J} 2\)
OJ2.266180071 0.3494850022JO.4808285788
\(1 \oplus 1\)
1
\(2 \oplus 1\)
0

Y may be any numeric array. R is numeric composed of the absolute (unsigned) values of \(Y\).

Note that the magnitude of a complex number \((a+i b)\) is defined to be \(\sqrt{a^{2}+b^{2}}\)

\section*{Examples}

| 3 j4
5
\(R+X \equiv Y\)
\(Y\) may be any array. \(X\) may be any array. \(R\) is a simple Boolean scalar. If \(X\) is identical to \(Y\), then \(R\) is 1 . Otherwise \(R\) is 0 .

Non-empty arrays are identical if they have the same structure and the same values in all corresponding locations. Empty arrays are identical if they have the same shape and the same prototype (disclosed nested structure).

पCT is an implicit argument of Match.

\section*{Examples}
\[
\theta \equiv \imath 0
\]

1
\[
' \quad 1 \equiv \imath 0
\]

0
A
THIS
WORD
A三2 \(4 \rho^{\prime}\) THISWORD'
1
\(A \equiv \imath 10\)
0
\[
+B \leftarrow A \quad A
\]

THIS THIS
WORD WORD
\(A \equiv \supset B\)
1
\((0 \rho A) \equiv 0 \rho B\)
0
\[
\text { ' } \quad 1=00 \text { م }
\]

1111
1111
' ' \(=\sim 0 \rho \mathrm{~A}\)
1

\section*{Matrix Divide:}
\(R \leftarrow X R Y\)
Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array of rank 2 or less. Y must be non-singular. A scalar argument is treated as a matrix with one-element. If \(Y\) is a vector, it is treated as a single column matrix. If \(X\) is a vector, it is treated as a single column matrix. The number of rows in \(X\) and \(Y\) must be the same. Y must have at least the same number of rows as columns.
\(R\) is the result of matrix division of \(X\) by \(Y\). That is, the matrix product \(Y+. \times R\) is \(X\).
\(R\) is determined such that \((X-Y+. \times R) * 2\) is minimised.
The shape of \(R\) is \((1 \downarrow \rho Y), 1 \downarrow \rho X\).

\section*{Examples}
\[
\square P P \leftarrow 5
\]

\section*{B}

314
159
265
358979 国 \(B\)
2.14448 .21115 .0889

A
3536
8988
7975
A 图 B
2.14442 .1889
8.21117 .1222
5.08895 .5778

If there are more rows than columns in the right argument，the least squares solution results．In the following example，the constants a and b which provide the best fit for the set of equations represented by \(\mathrm{P}=\mathrm{a}+\mathrm{bQ}\) are determined：

Q
\(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 5 \\ 1 & 6\end{array}\)
P
```

12.03 8.78 6.01 3.75 -0.31 -2.79
P目Q
14.941-2.9609

```

Example：linear regression on complex numbers
\(x+j t^{-} 50+? 21340100\)
\(y \leftarrow(x+. \times 3456)+j \nmid 0.0001 x^{-} 50+? 213 p 100\)
\(\rho x\)
134
py
13
\(y\) 目 \(x\)
3J0．000011066 4J－0．000018499 5J0．000005745 6J0．000050328
ค i．e．y国x recovered the coefficients 3456

\section*{Matrix Inverse:}

\section*{R-回Y}
\(Y\) must be a simple array of rank 2 or less. \(Y\) must be non-singular. If \(Y\) is a scalar, it is treated as a one-element matrix. If \(Y\) is a vector, it is treated as a single-column matrix. \(Y\) must have at least the same number of rows as columns.
\(R\) is the inverse of \(Y\) if \(Y\) is a square matrix, or the left inverse of \(Y\) if \(Y\) is not a square matrix. That is, \(R+. \times Y\) is an identity matrix.

The shape of \(R\) is \(\phi \rho Y\).

\section*{Examples}
```

 M
 2-3
410
\& +A\&RM
-0.125 0.0625

```

Within calculation accuracy, \(A+. \times M\) is the identity matrix.
\[
A+. \times M
\]

10
01
\[
\begin{array}{rrrrr}
\mathrm{j} \leftarrow\{\alpha+0 \diamond \alpha+0 \mathrm{~J} 1 \times \omega\} \\
\mathrm{x}-\mathrm{j} t^{-} 50+? 2 & 5 & 5 \rho 100 \\
\mathrm{x} & & & \\
-37 \mathrm{~J} 41 & 25 \mathrm{~J} 015 & -5 \mathrm{~J}-09 & 3 \mathrm{~J} 020 & -29 \mathrm{~J} 041 \\
-46 \mathrm{~J} 026 & 17 \mathrm{~J}-24 & 17 \mathrm{~J}-46 & 43 \mathrm{~J} 023 & -12 \mathrm{~J}-18 \\
1 \mathrm{~J} 013 & 33 \mathrm{~J} 025 & -47 \mathrm{~J} 049 & -45 \mathrm{~J}-14 & 2 \mathrm{JJ} 26 \\
17 \mathrm{~J} 048 & -50 \mathrm{~J} 022 & -12 \mathrm{JO} 25 & -44 \mathrm{~J} 015 & -9 \mathrm{~J}-43 \\
18 \mathrm{~J} 013 & 8 \mathrm{~J} 038 & 43 \mathrm{~J}-23 & 34 \mathrm{~J}-07 & 2 \mathrm{~J} 026 \\
\rho \mathrm{px} & & & &
\end{array}
\]

55
\[
3.66384 \mathrm{E}^{-1} 16
\]
\[
\begin{aligned}
& \text { idt }\{0=\ddot{\sim} \imath \omega\} \quad \rho \text { identity matrix of order } \omega \\
& \left\lceil(i d 1 \uparrow \rho x)^{-x+. \times Q x}\right.
\end{aligned}
\]

Y may be any numeric array. X may be any numeric array. R is numeric. R is the larger of the numbers \(X\) and \(Y\).

\section*{Example}


\section*{Membership:}
\(Y\) may be any array. \(X\) may be any array. \(R\) is Boolean. An element of \(R\) is 1 if the corresponding element of \(X\) can be found in \(Y\).

An element of \(X\) is considered identical to an element in \(Y\) if \(X \equiv Y\) returns 1 for those elements.

पCT is an implicit argument of Membership.

\section*{Examples}
```

 'THIS NOUN' \epsilon 'THAT WORD'
 110010100
'CAT' 'DOG' 'MOUSE' \epsilon 'CAT' 'FOX' 'DOG' 'LLAMA'
1 10

```

For performance information, see "Search Functions and Hash Tables" on page 108.

\section*{Minimum:}
\(R \leftarrow X L Y\)
\(Y\) may be any numeric array. \(X\) may be any numeric array. \(R\) is numeric. \(R\) is the smaller of \(X\) and \(Y\).

\section*{Example}
\[
\begin{array}{lll}
-3.2 & 0.1 & 15.3
\end{array}
\]
\[
-2.10 .115 .3 \text { L-3.2 } 122
\]

Minus:
See "Subtract:" on page 314.


The symbol chosen to represent Mix depends on the current Migration Level.
If \(\mathrm{CML}<2\), Mix is represented by the symbol: \(\uparrow\).
If \(\square M L \geq 2\), Mix is represented by the symbol: د.
\(Y\) may be any array. All of the items of \(Y\) must be scalars and/or arrays of the same rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The value of \(K\) must be a fractional number indicating the two axes of \(Y\) between which new axes are to be inserted. If absent, new ones are added at the end.
\(R\) is an array composed from the items of a \(Y\) assembled into a higher order array with one less level of nesting. If items of \(Y\) have different shapes, each is padded with the corresponding prototype to a shape that represents the greatest length along each axis of all items in \(Y\). The shape of \(R\) is the shape of \(Y\) with the shape of a typical (extended) item of \(Y\) inserted between the \(L K\) th and the \(\lceil K\) th axes of \(Y\).

\section*{Examples}
\[
\uparrow(1)\left(\begin{array}{llll}
1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
\]

100
120
123
```

 \uparrow[0.5](1) (1 2) (1 2 3)
    ```
111
022
003
\begin{tabular}{|c|c|c|c|}
\hline & \(A \leftarrow\) ( 'andy ' & 19)('geoff' & 37)('pauline' 21) \\
\hline \multicolumn{4}{|c|}{\(\uparrow \mathrm{A}\)} \\
\hline andy & 19 & & \\
\hline geoff & 37 & & \\
\hline paulin & ne 21 & & \\
\hline
\end{tabular}
    \(\uparrow[0.5] \mathrm{A}\)
andy geoff pauline
\(R \leftarrow X \times Y\)
\(Y\) may be any numeric array. \(X\) may be any numeric array. \(R\) is the arithmetic product of \(X\) and \(Y\).

This function is also known as Times.

\section*{Example}

6890
2j3x.3j.5 1j2 3j4. . 5
-0.9J1.9-4J7-6J17 1J1.5
\(Y\) must be a Boolean array. \(X\) must be a Boolean array. \(R\) is Boolean. The value of \(R\) is the truth value of the proposition "not both \(X\) and \(Y\) ", and is determined as follows:
\begin{tabular}{lll}
\(X\) & \(Y\) & \(R\) \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}

\section*{Example}
```

 (0 1)(1 0) \tilde{^ (0 0)(1 1)}
 1 0 1

```

\section*{Natural Logarithm:}

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian) logarithm of Y whose base is the mathematical constant \(e=2.71828 \ldots\).

\section*{Example}
© 12
00.6931471806
-2 2p0j1 1j2 2j3 3j4
0.000000000 J 1.5707963270 .8047189562 J 1.107148718
1.282474679JO.9827937232 1.6094379120JO.927295218
Negative:

\section*{Example}
\[
\begin{aligned}
& -4-2 \begin{array}{llllll}
-4 & 2 & 0 & -3 & -5
\end{array} \\
& -4-2035 \\
& \text {-1j2 -2J3 4J-5 } \\
& -1 J^{-2} 2 J^{-3}-4 \mathrm{~J} 5
\end{aligned}
\]
\(R \leftarrow-Y\)
\(Y\) may be any numeric array. \(R\) is numeric and is the negative value of \(Y\). For complex numbers both the real and imaginary parts are negated.
Nor:\(R \leftarrow X \tilde{V} Y\)
\(Y\) must be a Boolean array. \(X\) must be a Boolean array. \(R\) is Boolean. The value of \(R\) is the truth value of the proposition "neither X nor Y ", and is determined as follows:
\begin{tabular}{lll}
\(X\) & \(Y\) & \(R\) \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{tabular}

\section*{Example}
\(1000 \begin{array}{lllllllll}0 & 0 & 1 & 1 & v & 0 & 1 & 0 & 1\end{array}\)
\(Y\) must be a Boolean array. \(R\) is Boolean. The value of \(R\) is 0 if \(Y\) is 1 , and \(R\) is 1 if \(Y\) is 0 .

\section*{Example}
~0 1
10
\(R+X \neq Y\)
\(Y\) may be any array. \(X\) may be any array. \(R\) is Boolean. \(R\) is 0 if \(X=Y\). Otherwise \(R\) is 1.

For Boolean X and Y , the value of R is the "exclusive or" result, determined as follows:
\begin{tabular}{lll}
\(X\) & \(Y\) & \(R\) \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{tabular}

पCT is an implicit argument of Not Equal.

\section*{Examples}
\(123 \neq 1.123\)
100
पCT \(-1 E^{-10}\)
\(1 \neq 11.000000000011 .0000001\)
001
\(123 \not\) ' \(^{\prime}\) CAT \(^{\prime}\)
111
Not Match:
\(R \leftarrow X \neq Y\)
\(Y\) may be any array. \(X\) may be any array. \(R\) is a simple Boolean scalar. If \(X\) is identical to Y , then R is 0 . Otherwise R is 1 .

Non-empty arrays are identical if they have the same structure and the same values in all corresponding locations. Empty arrays are identical if they have the same shape and the same prototype (disclosed nested structure).

DCT is an implicit argument of Not Match.

\section*{Examples}
\(\theta \not \equiv \imath 0\)
0
\[
\text { ' ' } \equiv \text { も } 0
\]

1
\(\vdash A \leftarrow C(\imath 3) \quad\) 'ABC'
123 ABC
```

 A#(r3)'ABC'
 1
A\#\subset(\imath3) 'ABC'
O
0\not=0\rhoA
1
(1\uparrow0\rhoA)\#\#с(0 0 0)
1

```

\section*{Or, Greatest Common Divisor:}

\section*{Case 1: \(X\) and \(Y\) are Boolean}

R is Boolean and is determined as follows:
\begin{tabular}{lll}
\(X\) & \(Y\) & \(R\) \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{tabular}

\section*{Example}
```

 0 0 1 1 v 0 1 0 1
 0111

```

\section*{Case 2: X and Y are numeric (non-Boolean)}
\(R\) is the Greatest Common Divisor of \(X\) and \(Y\).

\section*{Examples}
```

 15127 v 35 1 4 0
 5127
rational\leftarrow{\uparrow\omega 1\divc1v\omega} \rho rational (\squareCT) approximation
\rho to floating array.
rational 0.4321 0.1234 6.66, \div1 2 3
4321 617 333 1 1 1
100005000 50 1 2 3

```
\(\square C T\) is an implicit argument in case 2.

\section*{Partition: \\ ( \(\square M L \geq 3\) ) \\ \(R+X \subset[K] Y\)}
\(Y\) may be any non scalar array.
\(X\) must be a simple scalar or vector of non-negative integers.
The axis specification is optional. If present, it must be a simple integer scalar or one element array representing an axis of Y . If absent, the last axis is implied.
\(R\) is an array of the elements of \(Y\) partitioned according to \(X\).
A new partition is started in the result whenever the corresponding element in \(X\) is greater than the previous one. Items in \(Y\) corresponding to \(0 s\) in \(X\) are not included in the result.

\section*{Examples}



\section*{Partitioned Enclose: \(\quad(\square M L<3) \quad R \leftarrow X \subset[K] Y\)}

Y may be any array. X must be a simple Boolean scalar or vector.
The axis specification is optional. If present, it must be a simple integer scalar or one-element vector. The value of \(K\) must be an axis of \(Y\). If absent, the last axis of \(Y\) is implied.
\(X\) must have the same length as the \(K\) th axis of \(Y\). However, if \(X\) is a scalar or one-element vector, it will be extended to the length of the \(K\) th axis of \(Y\).
\(R\) is a vector of items selected from \(Y\). The sub-arrays identified along the \(K\) th axis of \(Y\) at positions corresponding to each 1 in \(X\) up to the position before the next 1 in \(X\) ( or the last element of \(X\) ) become the successive items of \(Y\). The length of \(R\) is \(+/ X\) (after possible extension).

\section*{Examples}
234 \begin{tabular}{lllllllllll} 
& 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & \(C l\)
\end{tabular}
```

 1 0 1 c[1] 3 4\rhor12
 1 2 3 4 9 10 11 12
5 6 7 8

```
\begin{tabular}{lcccccc} 
& & 1 & 0 & 0 & 1 & \(c[2] 3\) \\
1 & 2 & 3 & 4 & & & \\
5 & 6 & 7 & 8 & & \\
9 & 10 & 11 & 12 & &
\end{tabular}
Pi Times:
\(Y\) may be any numeric array. \(R\) is numeric. The value of \(R\) is the product of the mathematical constant \(\pi=3.14159 \ldots\) (Pi), and Y .

\section*{Example}
00.512
1.5707963273 .1415926546 .283185307
OOJ 1
OJ3.141592654
*०0J1 ค Euler
-1\(R+O Y\)

\section*{Pick:}
\(Y\) may be any array.
\(X\) is a scalar or vector of indices of \(Y\), viz. \(\imath \rho Y\).
\(R\) is an item selected from the structure of \(Y\) according to \(X\).
Elements of X select from successively deeper levels in the structure of Y . The items of \(X\) are simple integer scalars or vectors which identify a set of indices, one per axis at the particular level of nesting of \(Y\) in row-major order. Simple scalar items in \(Y\) may be picked by empty vector items in \(X\) to any arbitrary depth.

DIO is an implicit argument of Pick.

\section*{Examples}
\(G \leftarrow(' A B C ' 1)(' D E F ' 2)(' G H I ' 3)(' J K L ' ~ 4) ~\)
G -2 3pG,('MNO' 5)('PQR' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6
( (c2 1), 1) c G
JKL
( \(\left.\begin{array}{cc}c & 1\end{array}\right) \supset G\)
JKL
4
\(\left.\left(\begin{array}{ll}(2 & 1\end{array}\right) 12\right) \supset G\)
K
10د

\section*{Plus:}
\(R \leftarrow X+Y\)

See "Add: " on page 222.

\section*{Power:}
\(R \leftarrow X * Y\)

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R is \(X\) raised to the power of \(Y\).

If \(Y\) is zero, \(R\) is defined to be 1 .
If \(X\) is zero, \(Y\) must be non-negative.
If \(X\) is negative, and \(Y\) can be approximated as a rational number of the form \(P \div Q\) where P and Q are relatively prime integers, then:
- if \(Q\) is even, \(X * Y\) gives a DOMAIN ERROR
- if \(Q\) is odd and \(P\) is even, then \(X * Y \leftrightarrow(\mid X) * Y\)
- if \(Q\) and \(P\) are both odd, then \(X * Y \leftrightarrow-(\mid X) * Y\)

If \(X\) is negative, and \(Y\) cannot be approximated as a rational number, then:
\[
X * Y \leftrightarrow-(\mid X) * Y \text {. }
\]

\section*{Examples}
```

 \(2 * 2-2\)
 40.25
$964 * 0.5$
38
-27*3 21.2 . 5
-19683 729-42.22738244J「30.67998919 OJ5.196152423
*2 2 00j1 1j2 2j3-4j-5
$0.5403023059 \mathrm{~J} 0.8414709848 \mathrm{~B}^{-1} .131204384000 \mathrm{~J} 2.471726672$
${ }^{-7}$.3151100950J1.042743656 0.005195454155 J 0.01756331074
*oOJ1 a Euler
-1

```

\section*{Ravel:}
\[
R \leftarrow, Y
\]
\(Y\) may be any array. \(R\) is a vector of the elements of \(Y\) taken in row-major order.

\section*{Examples}

M
123
456
123456
A
ABC

\section*{DEF}

GHI
JKL
ABCDEFGHIJKL
م, 10
1

\section*{Ravel with Axes:}
\(Y\) may be any array.
\(K\) is either:
- A simple fractional scalar adjacent to an axis of \(Y\), or
- A simple integer scalar or vector of axes of \(Y\), or
- An empty vector.

Ravel with axis can be used with selective specification.
\(R\) depends on the case of \(K\) above.
If \(K\) is a fraction, the result \(R\) is an array of the same shape as \(Y\), but with a new axis of length 1 inserted at the K'th position.
\[
\begin{aligned}
& \rho \rho R \leftrightarrow 1+\rho \rho Y \\
& \rho R \leftrightarrow(1, \rho Y)[4 K, \imath \rho \rho Y]
\end{aligned}
\]

\section*{Examples}
```

 ,[0.5]'ABC'
 ABC
\rho,[0.5]'ABC'
13
,[1.5]'ABC'
A
B
C
\rho,[1.5]'ABC'
3 1
MAT < 3 4\rhor12
\rho,[0.5]MAT
134
\rho,[1.5]MAT
3 14
\rho,[2.5]MAT
3 4 1

```

If \(K\) is an integer scalar or vector of axes of \(Y\), then:
- \(K\) must contain contiguous axes of \(Y\) in ascending order.
- \(R\) contains the elements of \(Y\) raveled along the indicated axes.

Note that if K is a scalar or single element vector, \(\mathrm{R} \leftrightarrow \mathrm{Y}\).
\[
\rho \rho R \leftrightarrow 1+(\rho \rho Y)-\rho, K
\]

\section*{Examples}
\begin{tabular}{rrrr} 
& \multicolumn{4}{c}{ M } \\
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
& & & \\
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 \\
& & & \(\rho M\)
\end{tabular}


If \(K\) is an empty vector a new last axis of length 1 is created.
\[
\rho R \leftrightarrow(\rho Y), 1
\]

\section*{Examples}


\section*{Reciprocal:}
\(R \leftarrow \div Y\)
\(Y\) must be a numeric array. \(R\) is numeric. \(R\) is the reciprocal of \(Y\); that is \(1 \div Y\). If CDIV \(=0, \div 0\) results in a DOMAIN ERROR. If CDIV \(=1, \div 0\) returns 0 .

UDIV is an implicit argument of Reciprocal.

\section*{Examples}
```

 \div4 2 5
 0.25 0.5 0.2
\div0j1 0j-1 2j2 4j4
0J-1 0J1 0.25J-0.25 0.125J-0.125
CDIV -1
\div0.5
O

```

\section*{Replicate:}

\section*{\(R+X /[K] Y\)}
\(Y\) may be any array. \(X\) is a simple integer vector or scalar.
The axis specification is optional. If present, K must be a simple integer scalar or unit vector. The value of \(K\) must be an axis of \(Y\). If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow X \not Y Y\) implies the first axis of \(Y\).

If \(Y\) has length 1 along the \(\mathrm{K}^{\text {th }}\) (or implied) axis, it is extended along that axis to match the length of \(X\). Otherwise, the length of \(X\) must be the length of the \(K^{\text {th }}\) (or implied) axis of \(Y\). However, if \(X\) is a scalar or one-element vector, it will be extended to the length of the \(\mathrm{K}^{\text {th }}\) axis.
\(R\) is composed from sub-arrays along the \(K\) th axis of \(Y\). If \(X[I]\) (an element of \(X\) ) is positive, then the corresponding sub-array is replicated X[I] times. If X [ I ] is zero, then the corresponding sub-array of \(Y\) is excluded. If \(X[I]\) is negative, then the fill element of \(Y(c \in \supset Y)\) is replicated \(\mid X[I]\) times. Each of the (replicated) sub-arrays and fill items are joined along the Kth axis in the order of occurrence. The shape of R is the shape of \(Y\) except that the length of the (implied) Kth axis is \(+/ \| X\) (after possible extension).

This function is sometimes called Compress when \(X\) is Boolean.
```

Examples
101 0 1/25
135
1000 3-4 3 3 0 0 0 0 0 5 5 5 5 5 5
M
123
456
2 0 1/M
1 13
4 4
0 1+M
4 6
O 1/[1]M
4 6

```

If \(Y\) is a singleton ( \(1=x / \rho, Y\) ) its value is notionally extended to the length of \(X\) along the specified axis.
```

 \(101 / 4\)
 44
10 1/,3
33
$101 / 11 \rho 5$
55

```

\section*{Reshape:}
\(R \leftarrow X \rho Y\)
\(Y\) may be any array. \(X\) must be a simple scalar or vector of non-negative integers. \(R\) is an array of shape \(X\) whose elements are taken from \(Y\) in row-major sequence and repeated cyclically if required. If \(Y\) is empty, \(R\) is composed of fill elements of \(Y\) ( \(c \in \supset Y\) ). If \(X\) contains at least one zero, then \(R\) is empty. If \(X\) is an empty vector, then \(R\) is scalar.

\section*{Examples}
\[
23 \rho z 8
\]

123
456
\(23 \rho 24\)
123
412
\(23 \rho \imath 0\)
000
000
\(Y\) may be any numeric array. \(X\) may be any numeric array.
For positive arguments, \(R\) is the remainder when \(Y\) is divided by \(X\). If \(X=0, R\) is \(Y\). For other argument values, \(R\) is \(Y-N \times X\) where \(N\) is some integer such that \(R\) lies between 0 and \(X\), but is not equal to \(X\).
—CT is an implicit argument of Residue.

\section*{Examples}
```

 3 3 -3 -3|-5 5 -4 4
 1 2 -1 -2
0.5|3.12-1 -0.6
0.1200.4
-1 0 1|-5.25 0 2.41
-0.25 0 0.41

```

```

1J1 -1J1 0J1

```

Note that the ASCII Broken Bar (Zucs 166, U+00A6) is not interpreted as Residue.

\section*{\(R+\phi[K] Y\)}
\(Y\) may be any array. The axis specification is optional. If present, \(K\) must be an integer scalar or one-element vector. The value of \(K\) must be an axis of \(Y\). If absent, the last axis is implied. The form \(R \leftarrow \theta Y\) implies the first axis.
\(R\) is the array \(Y\) rotated about the \(K\) th or implied axis.

\section*{Examples}
\(\phi 12345\)
54321

\section*{M}

123
456
\(\phi M\)
321
654
өM
456
123
\(\phi[1] M\)
456
123

\section*{Reverse First: \\ \(R+\theta[K] Y\)}

The form \(R \leftarrow \theta Y\) implies reversal along the first axis. See "Reverse:" above.

\section*{Right:}
\(X\) and \(Y\) may be any arrays. The result \(R\) is the right argument \(Y\).

\section*{Example}
```

 42 ト'abc' 1 2 3
 abc 1 2 3
    ```

Note that when \(\vdash\) is applied using reduction, the derived function selects the last subarray of the array along the specified dimension. This is implemented as an idiom.
```

Examples
r/1 2 3
3
mat<个'scent' 'canoe' 'arson' 'rouse' 'fleet'
rfmat \& last row
fleet
r/mat a last column
tenet
r/[2]2 3 4\rhor24 @ last row from each plane
91011 12
2122 23 24

```

\section*{Roll:}

\section*{\(R+? Y\)}

Y may be any positive integer array. R has the same shape as Y at each depth.
For each element of \(\mathrm{Y}, \mathrm{y}\), the corresponding element of R is an integer, pseudo-randomly selected from the integers \(\tau y\) with each integer in this population having an equal chance of being selected.

DIO and DRL are implicit arguments of Roll. A side effect of Roll is to change the value of DRL. See "Random Number Generator:" on page 366 and "Random Link: " on page 575 .

\section*{Examples}
\(? 999\)
275

\section*{Rotate:}
\(Y\) may be any array. \(X\) must be a simple integer array. The axis specification is optional. If present, K must be a simple integer scalar or one-element vector.

The value of \(K\) must be an axis of \(Y\). If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow X \oplus Y\) implies the first axis.

If \(Y\) is a scalar, it is treated as a one-element vector. \(X\) must have the same shape as the rank of \(Y\) excluding the \(K\) th dimension. If \(X\) is a scalar or one-element vector, it will be extended to conform. If \(Y\) is a vector, then \(X\) may be a scalar or a one-element vector.
\(R\) is an array with the same shape as \(Y\), with the elements of each of the vectors along the K th axis of Y rotated by the value of the corresponding element of X . If the value
is positive, the rotation is in the sense of right to left. If the value is negative, the rotation is in the sense of left to right.

\section*{Examples}


\section*{Same: \\ \(R \leftarrow-Y\)}
\(Y\) may be any array.
The result R is the argument Y .

\section*{Examples}
```

 ヶ'abc' 1 2 3
 abc 1 2 3

```

\section*{Shape:}
\(R+p Y\)
\(Y\) may be any array. \(R\) is a non-negative integer vector whose elements are the dimensions of \(Y\). If \(Y\) is a scalar, then \(R\) is an empty vector. The rank of \(Y\) is given by \(\rho \rho Y\).

\section*{Examples}
```

 p10
 \rho'CAT'
 3
\rho3 4\rhor12
34
+G\leftarrow(2 3pr6)('CAT' 'MOUSE' 'FLEA')
1 2 3 CAT MOUSE FLEA
4 5
pG
2
\rho\rhoG
1

```

```

 \rho**G
 5 5 4
    ```

\section*{Signum:} \(R \leftarrow x Y\)
\(Y\) may be any numeric array. \(R\) is an integer array whose value indicates whether the value of \(Y\) is negative ( \({ }^{-1}\) ), zero (0) or positive (1).

\section*{Example}
\[
x^{-15.3} 0101
\]
-1 01

Y may be any array. The axis specification is optional. If present, K must be a simple integer scalar or one-element vector. The value of \(K\) must be an axis of \(Y\). If absent, the last axis is implied.

The items of \(R\) are the sub-arrays of \(Y\) along the \(K\) th axis. \(R\) is a scalar if \(Y\) is a scalar. Otherwise \(R\) is an array whose rank is \(-1+\rho \rho Y\) and whose shape is ( \(K \neq \imath \rho \rho Y\) ) / \(\rho Y\).

\section*{Examples}
```

 \downarrow3 4\rho'MINDTHATSTEP'
 MIND THAT STEP
 \downarrow2 5pr10
 12 3 4 5 6 7 8 9 10
 \downarrow[1]2 5pr10
 1 6

```

\section*{Subtract:}

Y may be any numeric array. X may be any numeric array. R is numeric. The value of \(R\) is the difference between \(X\) and \(Y\).

This function is also known as Minus.

\section*{Example}
\(1-36^{3-240-21-24}\)
\(1.7 J^{-2} 2^{2 j 3-.3 j 5}\) ค \((a+b i)-(c+d i)=(a-c)+(b-d) i\)
\(Y\) may be any array. \(R\) is a 2-dimensional matrix of the elements of \(Y\) taken in rowmajor order, preserving the shape of the first dimension of \(Y\) if it exists

Table has been implemented according to the Extended APL Standard (ISO/IEC 13751:2001).

\section*{Examples}
]display \(\{\omega\) ( \(\rho \omega\) ) \} -'a'

]display \(\{\omega\) ( \(\rho \omega\) ) \} -'hello'

]display \(\{\omega(\rho \omega)\}-234 \rho 24\)


\section*{\(R \leftarrow X \uparrow Y\)}

Y may be any array. X must be a simple integer scalar or vector.
If \(Y\) is a scalar, it is treated as a one-element array of shape \((\rho, X) \rho 1\). The length of \(X\) must be the same as or less than the rank of \(Y\). If the length of \(X\) is less than the rank of \(Y\), the missing elements of \(X\) default to the length of the corresponding axis of \(Y\).
\(R\) is an array of the same rank as \(Y\) (after possible extension), and of shape \(\mid X\). If \(X[I]\) (an element of \(X\) ) is positive, then \(X[I]\) sub-arrays are taken from the beginning of the \(I\) th axis of \(Y\). If \(X[I]\) is negative, then \(X[I]\) sub-arrays are taken from the end of the Ith axis of \(Y\).

If more elements are taken than exist on axis \(I\), the extra positions in \(R\) are filled with the fill element of \(Y(c \in \supset Y)\).

\section*{Examples}
```

5^'ABCDEF'
ABCDE
5^1 2 3
12300
-5^1 2 3
0 0 1 2 3
5^(\imath3) (\imath4) (\imath5)
12 3 1 2 3 4 1 2 3 4 5 0 0 0 0 0 0
M
1 2 3 4
5 6 7 8
2 3\uparrowM
123
5 6 7
-1 -2^M
78
M3+2 3 4\rhoDA
1^M3
ABCD
EFGH
IJKL
-1 \M3
MNOP
QRST
UVWX

```

\section*{Take with Axes:}

\section*{\(R+X \uparrow[K] Y\)}

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a vector of zero or more axes of Y .
\(R\) is an array of the first or last elements of \(Y\) taken along the axes \(K\) depending on whether the corresponding element of \(X\) is positive or negative respectively.

The rank of \(R\) is the same as the rank of \(Y\) :
\[
\rho \rho R \leftrightarrow \rho \rho Y
\]

The size of each axis of \(R\) is determined by the corresponding element of \(X\) :
\[
(\rho R)[, K] \leftrightarrow I, X
\]

\section*{Examples}


\section*{Times: \(R \leftarrow X \times Y\)}

See "Multiply:" on page 294.

\section*{Transpose (Monadic):}
\(Y\) may be any array. \(R\) is an array of shape \(\phi \rho Y\), similar to \(Y\) with the order of the axes reversed.

Examples

123
456
\$M
14
25
36

\section*{Transpose (Dyadic):}
\(Y\) may be any array. \(X\) must be a simple scalar or vector whose elements are included in the set \(\imath \rho \rho Y\). Integer values in \(X\) may be repeated but all integers in the set \(\imath\lceil/ X\) must be included. The length of \(X\) must equal the rank of \(Y\).
\(R\) is an array formed by the transposition of the axes of \(Y\) as specified by \(X\). The Ith element of \(X\) gives the new position for the \(I\) th axis of \(Y\). If \(X\) repositions two or more axes of \(Y\) to the same axis, the elements used to fill this axis are those whose indices on the relevant axes of \(Y\) are equal.

DIO is an implicit argument of Dyadic Transpose.

\section*{Examples}

A
1 \begin{tabular}{lll}
1 & 2 & 3
\end{tabular}
\(\begin{array}{llll}5 & 6 & 7 & 8\end{array}\)
9101112
13141516
17181920
21222324
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{\(213 ¢ \mathrm{~A}\)} \\
\hline & 2 & 3 & 4 \\
\hline & 14 & & 16 \\
\hline 5 & 6 & 7 & 8 \\
\hline 17 & 18 & & 20 \\
\hline 9 & 10 & 11 & 12 \\
\hline 21 & 22 & 23 & 24 \\
\hline & & & \(11 \phi A\) \\
\hline \multicolumn{4}{|l|}{118} \\
\hline \multicolumn{4}{|r|}{\(112 \phi A\)} \\
\hline 1 & 2 & 3 & 4 \\
\hline 17 & 18 & & 20 \\
\hline
\end{tabular}

Type:
( \(\quad \mathrm{ML}<1\) )
\(R+\epsilon Y\)
Migration level must be such that \(\square M L<1\) (otherwise \(\epsilon\) means Enlist. See "Enlist:" on page 252).
\(Y\) may be any array. \(R\) is an array with the same shape and structure as \(Y\) in which a numeric value is replaced by 0 and a character value is replaced by ' '.

\section*{Examples}
\[
\begin{aligned}
& \text { ( } \mathbf{2}^{2} 3 \rho \imath 6 \text { ) (1 4p'TEXT') } \\
& 000 \\
& 000 \\
& \text { ' ' }=\epsilon^{\prime} \mathrm{X}^{\prime} \\
& 1
\end{aligned}
\]

\section*{Union:}
\(Y\) must be a vector. \(X\) must be a vector. If either argument is a scalar, it is treated as a one-element vector. \(R\) is a vector of the elements of \(X\) catenated with the elements of \(Y\) which are not found in \(X\).

Items in \(X\) and \(Y\) are considered the same if \(X \equiv Y\) returns 1 for those items.
पCT is an implicit argument of Union.

\section*{Examples}
```

 'WASH' u 'SHOUT'
 WASHOUT
'ONE' 'TWO' u 'TWO' 'THREE'
ONE TWO THREE

```

For performance information, see "Search Functions and Hash Tables" on page 108.

\section*{Unique:}
\(Y\) must be a vector. \(R\) is a vector of the elements of \(Y\) omitting non-unique elements after the first.
—CT is an implicit argument of Unique.

\section*{Examples}
```

 u 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
 CAT DOG MOUSE FOX
 u 22 10 22 22 21 10 5 10
 2210 21 5

```

\section*{Without:}

See "Excluding:" on page 254.

\section*{Zilde:}

The empty vector (20) may be represented by the numeric constant \(\theta\) called ZILDE.

\section*{Chapter 5:}

\section*{Primitive Operators}

\section*{Operator Syntax}

Operators take one or two operands. An operator with one operand is monadic. The operand of a monadic operator is to the left of the operator. An operator with two operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function or array expression to its left (see "Operators" on page 21). A dyadic operator has short scope on the right. Right scope may be extended by the use of parentheses.

An operand may be an array, a primitive function, a system function, a defined function or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived function may be monadic or dyadic and it may or may not return an explicit result.

\section*{Examples}
\(+/ \imath 5\)
15
(**2) て 3
149
PLUS \(\leftarrow+\diamond\) TIMES \(\leftarrow x\)
1 PLUS.TIMES 2
2
DNL 2
A
X
CEX" \(\downarrow\) DNL 2
पNL 2

\section*{Axis Specification}

Some operators may include an axis specification．Axis is itself an operator．How－ ever the effect of axis is described for each operator where its specification is per－ mitted．DIO is an implicit argument of the function derived from the Axis operator．

The description for each operator follows in alphabetical sequence．The valence of the derived function is specifically identified to the right of the heading block．

Table 8：Primitive Operators
\begin{tabular}{|c|c|c|c|}
\hline Class of Operator & Name & Producing Monadic derived function & Producing Dyadic derived function \\
\hline Monadic & \begin{tabular}{l}
Assignment \\
Assignment \\
Assignment \\
Commute \\
Each \\
I－Beam \\
Reduction \\
Scan \\
Spawn
\end{tabular} & \[
\begin{array}{lll}
f * Y & & \\
\text { AII } & \\
f / Y & {[ } & ] \\
f f Y & {[ } & ] \\
f \backslash Y & {[ } & ] \\
f+Y & {[ } & ] \\
f \& Y &
\end{array}
\] & \begin{tabular}{l}
\(X f \leftarrow Y\) \\
\(X[I] f \leftarrow Y\) \\
（EXP X）f \(\leftarrow \mathrm{Y}\) \\
\(X f \ddot{\sim} Y\) \\
\(X f\)＂\(Y\) \\
\(X f \& Y\)
\end{tabular} \\
\hline Dyadic & \begin{tabular}{l}
Axis \\
Composition \\
Inner Product \\
Outer Product \\
Power \\
Variant
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \hline f[B] Y \\
& f \circ g Y \\
& A \circ g Y \\
& (f \circ B) Y
\end{aligned}
\] \\
f \(\ddot{*} g Y\) \\
f回g
\end{tabular} & \[
\begin{aligned}
& X f[B] Y \\
& X f \circ g Y \\
& \\
& X f . g Y \\
& X \circ \cdot g Y \\
& X f \ddot{*} g Y \\
& X f ⿴ 囗 Y
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{［ ］Indicates optional axis specification} \\
\hline
\end{tabular}

\section*{Operators (A-Z)}

Monadic and Dyadic primitive operators are presented in alphabetical order of their descriptive names as shown in Table 8 above.

The valence of the operator and the derived function are implied by the syntax in the heading block.

\section*{Assignment (Modified):} \(\{R\}+X f+Y\)
f may be any dyadic function which returns an explicit result. \(Y\) may be any array whose items are appropriate to function \(f\). \(X\) must be the name of an existing array whose items are appropriate to function \(f\).
\(R\) is the "pass-through" value, that is, the value of \(Y\). If the result of the derived function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by \(X\) to the result of \(X f Y\).

\section*{Examples}

A
12345
A \(+\leftarrow 10\)
A
\(11 \quad 12131415\)
\(D \leftarrow A x \leftarrow 2\)
2
A
2224262830
vec \(\leftarrow-4+9\) ? \(9 \diamond\) vec
\(351-1-2410-32\)
vec/ \(/ \ddot{\sim}+v e c>0\) \(\diamond v e c\)
35142

\section*{Assignment (Indexed Modified): \(\quad\{R\} \leftarrow X[I] f \leftarrow Y\)}
f may be any dyadic function which returns an explicit result. \(Y\) may be any array whose items are appropriate to function \(f . X\) must be the name of an existing array. \(I\) must be a valid index specification. The items of the indexed portion of \(X\) must be appropriate to function \(f\).
\(R\) is the "pass-through" value, that is, the value of \(Y\). If the result of the derived function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of \(X\), that is \(X\) [ I ], to the result of \(\mathrm{X}[\mathrm{I}] \mathrm{f} \mathrm{Y}\). This result must have the same shape as \(\mathrm{X}[\mathrm{I}]\).

\section*{Examples}

A
12345
\(+A\left[\begin{array}{ll}2 & 4\end{array}\right]++1\)
1

A
13355
\(A[3] \div-2\)

A
131.555

If an index is repeated, function \(f\) will be applied to the successive values of the indexed elements of \(X\), taking the index occurrences in left-to-right order.

\section*{Example}
\[
B+5 \rho 0
\]
\(B\left[\begin{array}{llllllllll}2 & 4 & 1 & 2 & 1 & 4 & 2 & 4 & 1 & 3\end{array}\right]++1\)
B
33130

\section*{Assignment (Selective Modified): \(\{R\} \leftarrow(E X P \quad X) f \leftarrow Y\)}
f may be any dyadic function which returns an explicit result. \(Y\) may be any array whose items are appropriate to function f . X must be the name of an existing array. EXP is an expression that selects elements of \(X\). (See "Assignment (Selective):" on page 231 for a list of allowed selection functions.) The selected elements of \(X\) must be appropriate to function \(f\).
\(R\) is the "pass-through" value, that is, the value of \(Y\). If the result of the derived function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of \(X\) to the result of \(X[I] f Y\) where \(X[I]\) defines the elements of \(X\) selected by EXP.

\section*{Example}

A
1236237830
\(((A>30) / A) x \leftarrow 100\)
A
12360023780030

\section*{Axis (with Monadic Operand):}
f must be a monadic primitive mixed function taken from those shown in Table 9 below, or a function derived from the operators Reduction (/) or Scan ( \(\backslash\) ). B must be a numeric scalar or vector. \(Y\) may be any array whose items are appropriate to function \(f\). Axis does not follow the normal syntax of an operator.

Table 9: Primitive monadic mixed functions with optional axis.
\begin{tabular}{|l|l|l|}
\hline Function & Name & Range of \(B\) \\
\hline\(\phi\) or \(\theta\) & Reverse & \(B \in \imath \rho \rho Y\) \\
\hline\(\uparrow\) & Mix & \((0 \neq 1 \mid B)^{\wedge}(B>\square I O-1)^{\wedge}(B<\square I O+\rho \rho Y)\) \\
\hline\(\downarrow\) & Split & \(B \in \imath \rho \rho Y\) \\
\hline, & Ravel & fraction, or zero or more axes of \(Y\) \\
\hline\(\subset\) & Enclose & \((B \equiv \imath 0) \vee(\wedge / B \in \imath \rho \rho Y)\) \\
\hline
\end{tabular}

In most cases, \(B\) is required to be an integer which identifies a specific axis of \(Y\). An exception occurs when \(f\) is the Mix function ( \(\uparrow\) ) in which case \(B\) is a fractional value whose lower and upper integer bounds select an adjacent pair of axes of \(Y\) or an extreme axis of Y. For Ravel (, ) and Enclose (c), B can be a vector of two or more axes.

DIO is an implicit argument of the derived function which determines the meaning of B.

\section*{Examples}
\(\phi[1] 2\) 3pr6
456
123
\[
\uparrow[.1]^{\prime} O N E ' \text { 'TWO' }
\]

OT
NW
EO

\section*{Axis (with Dyadic Operand):}
\(f\) must be a dyadic primitive scalar function, or a dyadic primitive mixed function taken from Table 10 below. \(B\) must be a numeric scalar or vector. \(X\) and \(Y\) may be any arrays whose items are appropriate to function \(f\). Axis does not follow the normal syntax of an operator.

Table 10: Primitive dyadic mixed functions with optional axis.
\begin{tabular}{|l|l|l|}
\hline Function & Name & Range of \(B\) \\
\hline\(/\) or + & Replicate & \(B \in \imath \rho \rho Y\) \\
\hline\(\backslash\) or + & Expand & \(B \in \imath \rho \rho Y\) \\
\hline c & \begin{tabular}{l} 
Partitioned \\
Enclose
\end{tabular} & \(B \in \imath \rho \rho Y\) \\
\hline\(\phi\) or \(\Theta\) & Rotate & \(B \in \imath \rho \rho Y\) \\
\hline , or - & \begin{tabular}{l} 
Catenate \(/\) \\
Laminate
\end{tabular} & \begin{tabular}{l}
\((0 \neq 1 \mid B)^{\wedge}(B>\square I O-\) \\
\(1)^{\wedge}(B<\square I O+(\rho \rho X)\lceil\rho \rho Y)\)
\end{tabular} \\
\hline\(\uparrow\) & Take & zero or more axes of \(Y\) \\
\hline\(\downarrow\) & Drop & zero or more axes of \(Y\) \\
\hline
\end{tabular}

In most cases, \(B\) must be an integer value identifying the axis of \(X\) and \(Y\) along which function \(f\) is to be applied.

Exceptionally, B must be a fractional value for the Laminate function (, ) whose upper and lower integer bounds identify a pair of axes or an extreme axis of \(X\) and \(Y\). For Take ( \(\uparrow\) ) and Drop ( \(\downarrow\) ), B can be a vector of two or more axes.

DIO is an implicit argument of the derived function which determines the meaning of B.

\section*{Examples}
\begin{tabular}{|c|c|}
\hline & \(145=[1] 32 p r 6\) \\
\hline 10 & \\
\hline 01 & \\
\hline & \\
\hline & 2-2 1/[2]2 3p'ABCDEF' \\
\hline AA & C \\
\hline DD & F \\
\hline & 'ABC', [1.1]' = ' \\
\hline A \(=\) & \\
\hline \(B=\) & \\
\hline \(\mathrm{C}=\) & \\
\hline & 'ABC', [0.1]' = ' \\
\hline ABC & \\
\hline & DIO<0 \\
\hline & 'ABC', [-0.5]' = ' \\
\hline ABC & \\
\hline = = & \\
\hline
\end{tabular}

\section*{Axis with Scalar Dyadic Functions}

The axis operator [ X ] can take a scalar dyadic function as operand. This has the effect of 'stretching' a lower rank array to fit a higher rank one. The arguments must be conformable along the specified axis (or axes) with elements of the lower rank array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis specification, and \(f\) a scalar dyadic function, then the expressions \(H f[X] L\) and \(L f[X] H\) are conformable if \((\rho L) \leftrightarrow(\rho H)[X]\). Each element of \(L\) is replicated along the remaining \((\rho \mathrm{H}) \sim \mathrm{X}\) axes of H .

In the special case where both arguments have the same rank, the right one will play the role of the higher rank array. If \(R\) is the right argument, \(L\) the left argument, \(X\) is an axis specification and \(f\) a scalar dyadic function, then the expression \(L f[X] R\) is conformable if \((\rho L) \leftrightarrow(\rho R)[X]\).

\section*{Examples}
```

mat
10 20 30
40 50 60
mat+[1]1 2 a add along first axis
11 21 31
42 52 62
mat+[2]1 2 3 \& add along last axis
112233
415263
cube
100 200 300
400 500 600
700 800 900
1000 1100 1200
cube+[1]1 2
101 201 301
401 501 601
702 802 902
10021102 1202
cube+[3]1 2 3
101 202 303
401 502 603
701 802 903
1 0 0 1 1 1 0 2 1 2 0 3
cube+[[2 3]mat
110 220 330
440 550 660
710 820 930
10401150 1260
cube+[[1 3 3]mat
110 220 330
410 520 630
740 850 960
10401150 1260

```

\section*{Commute:}

\section*{\(\{R\}+\{X\} f \ddot{\sim} Y\)}
\(f\) may be any dyadic function. \(X\) and \(Y\) may be any arrays whose items are appropriate to function \(f\).

The derived function is equivalent to \(Y f X\). The derived function need not return a result.

If left argument \(X\) is omitted, the right argument \(Y\) is duplicated in its place, i.e.
\[
f \ddot{\sim} Y \leftrightarrow Y f \ddot{\sim} Y
\]

\section*{Examples}
```

 N
 3254613
N/\ddot{~}||
3 5 3
0\ddot{~}
3 3
mean++/\circ(\div०\rho\ddot{~}) ค mean of a vector
mean r10
5.5

```

The following statements are equivalent:
\[
\begin{aligned}
& F / \ddot{\sim} \leftarrow I \\
& F \leftarrow F / \ddot{\sim} I \\
& F \leftarrow I / F
\end{aligned}
\]

Commute often eliminates the need for parentheses

\section*{Composition（Form I）： \(\{R\}+f \circ g Y\)}
\(f\) may be any monadic function．\(g\) may be any monadic function which returns a result． Y may be any array whose items are appropriate to function g ．The items of gY must be appropriate to function f ．

The derived function is equivalent to fgY ．The derived function need not return a result．

Composition allows functions to be glued together to build up more complex func－ tions．

\section*{Examples}

> RANK \(\leftarrow \rho^{\circ} \rho\)
> RANK \(:\) JOANNE' \((23 \rho \imath 6)\)

12
\(+/ \circ\) って 246
31021
\(\nabla R \leftarrow\) SUM \(X\)
［1］\(R \leftarrow+/ X\)
\(\nabla\)
\[
\text { SUMO乙 } \because 246
\]

31021

\section*{Composition (Form II): \\ \(\{R\}+A \circ g Y\)}
\(g\) may be any dyadic function. A may be any array whose items are appropriate to function g . Y may be any array whose items are appropriate to function g .

The derived function is equivalent to AgY . The derived function need not return a result.

\section*{Examples}
```

 2 200 *'AB'
 AA
 BB
 AA BB
 SINE \leftarrow 100
 SINE 10 20 30
 -0.5440211109 0.9129452507 -0.9880316241

```

The following example uses Composition Forms I and II to list functions in the workspace:

DNL 3
ADD
PLUS
\[
\square \circ \leftarrow \circ \square V R " \downarrow \square N L 3
\]
\(\nabla\) ADD X
[1] \(\rightarrow L A B \rho \ddot{\sim} 0 \neq \square N C^{\prime} S U M^{\prime} \diamond S U M \rightarrow 0\)
[2] LAB:SUM + SUM \(++/ X\)
\(\nabla\)
\(\nabla R \leftarrow A\) PLUS B
[1]
\(R \leftarrow A+B\)
\(\nabla\)

\section*{Composition (Form III): \(\{R\}+(f \circ B) Y\)}
f may be any dyadic function. B may be any array whose items are appropriate to function \(f\). \(Y\) may be any array whose items are appropriate to function \(f\).

The derived function is equivalent to \(Y f B\). The derived function need not return a result.

\section*{Examples}
\((* \circ 0.5) 41625\)
245
```

 SQRT \leftarrow**. }
    ```
    SQRT 41625

245
The parentheses are required in order to distinguish between the operand \(B\) and the argument Y .

\section*{Composition (Form IV): \\ \(\{R\}+X f \circ g Y\)}
\(f\) may be any dyadic function. \(g\) may be any monadic function which returns a result. Y may be any array whose items are appropriate to function g . Also gY must return a result whose items are appropriate as the right argument of function \(f\). \(X\) may be any array whose items are appropriate to function \(f\).

The derived function is equivalent to Xfg Y . The derived function need not return a result.

\section*{Examples}
\(+0 \div / 40 \rho 1\)
ค Golden Ratio! (Bob Smith)
1.618033989
```

 0,\circ\imath``%
 014012 1 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5

```

\section*{Each（with Monadic Operand）： \\ \(\{R\}+f " Y\)}
\(f\) may be any monadic function．\(Y\) may be any array，each of whose items are sep－ arately appropriate to function \(f\) ．

The derived function applies function \(f\) separately to each item of \(Y\) ．The derived function need not return a result．If a result is returned，\(R\) has the same shape as \(Y\) ， and its elements are the items produced by the application of function \(f\) to the cor－ responding items of Y ．

If Y is empty，the prototype of R is determined by applying the operand function once to the prototype of Y ．

\section*{Examples}

G↔（＇TOM＇（っ3））（＇DICK＇（っ4））（＇HARRY＇（っ5））
pG
3
\(2 \quad 2 \quad{ }_{2}^{\circ} \mathrm{G}\)
\(33^{\rho^{\cdots \cdots} G}{ }_{4} \quad 4 \quad 5 \quad 5\)
＋पFX＊（＇FOO1＇＇A +1 ＇）（＇FOO2＇＇A +2 ＇）
F001 FOO2

\section*{Each (with Dyadic Operand): \\ \(\{R\}+X f " Y\)}
\(f\) may be any dyadic function. \(X\) and \(Y\) may be any arrays whose corresponding items (after scalar extension) are appropriate to function \(f\) when applied separately.

The derived function is applied separately to each pair of corresponding elements of \(X\) and \(Y\). If \(X\) or \(Y\) is a scalar or single-element array, it will be extended to conform with the other argument. The derived function need not produce an explicit result. If a result is returned, \(R\) has the same shape as \(Y\) (after possible scalar extension) whose elements are the items produced by the application of the derived function to the corresponding items of \(X\) and \(Y\).

If \(X\) or \(Y\) is empty, the operand function is applied once between the first items of \(X\) and \(Y\) to determine the prototype of \(R\).

\section*{Examples}


\section*{Inner Product: \\ \(R+X f . g Y\)}
\(f\) must be a dyadic function. \(g\) may be any dyadic function which returns a result. The last axis of \(X\) must have the same length as the first axis of \(Y\).

The result of the derived function has shape \((-1 \downarrow \rho X), 1 \downarrow \rho Y\). Each item of \(R\) is the result of \(f / x g^{"} y\) where \(x\) and \(y\) are typical vectors taken from all the combinations of vectors along the last axis of \(X\) and the first axis of \(Y\) respectively.

Function \(f\) (and the derived function) need not return a result in the exceptional case when \(2=-1 \uparrow \rho X\). In all other cases, function \(f\) must return a result.

If the result of \(x g^{\circ} \mathrm{y}\) is empty, for any x and y , a DOMAIN ERROR will be reported unless function \(f\) is a primitive scalar dyadic function with an identity element shown in "Identity Elements" on page 339.

\section*{Examples}

76
\(123+. \times 101214\)

123 PLUS.TIMES 101214
76
+/1 \(23 \times 101214\)
76
NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN
NAMES^.='WILLIAM '
0100

\section*{Outer Product: \\ \(\{R\}+X \circ . g Y\)}
g may be any dyadic function. The left operand of the operator is the symbol \(\circ\). X and \(Y\) may be any arrays whose elements are appropriate to the function \(g\).

Function \(g\) is applied to all combinations of the elements of \(X\) and \(Y\). If function \(g\) returns a result, the shape of \(R\) is \((\rho X), \rho Y\). Each element of \(R\) is the item returned by function \(g\) when applied to the particular combination of elements of \(X\) and \(Y\).

\section*{Examples}
\(1230 . \times 10203040\)
\(102030 \quad 40\)
\(20 \quad 40 \quad 60 \quad 80\)
306090120
\begin{tabular}{llll} 
& 1 & 2 & \(30 . \rho^{\prime} A B^{\prime}\) \\
\(A\) & \(B\) & \\
\(A A\) & \(B B\) & \\
\(A A A\) & \(B B B\) &
\end{tabular}
\begin{tabular}{lllllll} 
& & & 1 & \(2 \circ\) &, 1 & 2
\end{tabular}
(っ3) ○. = っ 3
100
010
001

If X or Y is empty, the result R is a conformable empty array, and the operand function is applied once between the first items of \(X\) and \(Y\) to determine the prototype of \(R\).

\section*{Power Operator: \\ \(\{R\}+\{X\}(f \ddot{*} g) Y\)}

If right operand g is a numeric integer scalar, power applies its left operand function \(f\) cumulatively \(g\) times to its argument. In particular, \(g\) may be Boolean 0 or 1 for conditional function application.

If right operand g is a scalar-returning-returning dyadic function, then left operand function \(f\) is applied repeatedly until ( \(f(Y) g Y\) ) or until a strong interrupt occurs. In particular, if g is \(=\) or \(\equiv\), the result is sometimes termed a fixpoint of f .

If a left argument \(X\) is present, it is bound as left argument to left operand function \(f\) :
```

X (f \ddot{x g) Y }

```

A negative right operand \(g\) applies the inverse of the operand function
\(\mathrm{f}, \mathrm{( } \mid \mathrm{g})\) times. In this case, f may be a primitive function or an expression of primitive functions combined with primitive operators:
\begin{tabular}{|l|l|}
\hline\(\circ\) & compose \\
\hline.. & each \\
\hline\(\circ\). & outer product \\
\hline\(\ddot{\sim}\) & commute \\
\hline\(\backslash\) & scan \\
\hline[] & axis \\
\hline\(\ddot{\star}\) & power \\
\hline
\end{tabular}

Defined, dynamic and some primitive functions do not have an inverse. In this case, a negative argument g generates DOMAIN ERROR.

\section*{Examples}
```

 (,oco,\ddot{*}(1=\equiv,vec))vec & ravel-enclose if simple.
 a b c\leftarrow1 0 1{(c\dddot{*}\alpha)\omega}``abc a enclose first and last.
 cap}\leftarrow{(\alpha\alpha\ddot{\star}\alpha)\omega} \rho conditional application.
 a b c\leftarrow1 0 1ccap"abc a enclose first and last.
 succ\leftarrow10+ A successor function.
 (succ\ddot{*4)10 A fourth successor of 10.}
 14
(succ\dddot{*}}3\mathrm{)10 A third predecessor of 10.
7
1+o\div\ddot{x}=1\quad \& fixpoint: golden mean.
1.618033989
f\leftarrow(32०+)\circ(x\circ1.8) \& Fahrenheit from Celsius.
f 0 100
32 212
c\leftarrowf\ddot{*}-1 \rho c is Inverse of f.
c 32 212 A Celsius from Fahrenheit.
0 100
invs\leftarrow{(\alpha\alpha\ddot{*}-1)\omega} 的 inverse operator.
+\invs 1 3 6 10 a scan inverse.
1234
2\circ\perpinvs 9 A decode inverse.
1001
dual \leftarrow{\omega\omega\ddot{*}}
mean}\leftarrow{(+/\omega)\div\rho\omega}\quad\rho mean function
mean dual\otimes 1 2 3 4 5 A geometric mean.
2.605171085
+/dual\div1 2 3 4 5 A parallel resistance.
0.4379562044
mean dual(}x\ddot{~})122345 A root-mean-square.
3.31662479
фdual\uparrow 'hello' 'world' A vector transpose.
hw eo lr ll od

```

\section*{Reduce: \\ \(R+f /[K] Y\)}
\(f\) must be a dyadic function. \(Y\) may be any array whose items in the sub-arrays along the Kth axis are appropriate to function \(f\).

The axis specification is optional. If present, K must identify an axis of Y . If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow f t Y\) implies the first axis of \(Y\).
\(R\) is an array formed by applying function \(f\) between items of the vectors along the Kth (or implied) axis of \(Y\).

Table 11: Identity Elements
\begin{tabular}{|l|l|l|}
\hline Function & & Identity \\
\hline Add & + & 0 \\
\hline Subtract & - & 0 \\
\hline Multiply & \(\times\) & 1 \\
\hline Divide & \(\div\) & 1 \\
\hline Residue & I & 0 \\
\hline Minimum & L & \(\mathrm{M}^{(1)}\) \\
\hline Maximum & \(\star\) & \(-\mathrm{M}^{(1)}\) \\
\hline Power & \(!\) & 1 \\
\hline Binomial & \(\wedge\) & 1 \\
\hline And & \(\vee\) & 0 \\
\hline Or & \(<\) & 0 \\
\hline Less & \(\leq\) & 1 \\
\hline Less or Equal & \(=\) & 1 \\
\hline Equal & \(>\) & 0 \\
\hline Greater & \(\geq\) & 1 \\
\hline Greater or Equal & \(\neq\) & 0 \\
\hline Not Equal & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Encode & T & 0 \\
\hline Union & \(u\) & \(\theta\) \\
\hline Replicate & \(I t\) & 1 \\
\hline Expand & \(1 t\) & 1 \\
\hline Rotate & \(\phi \theta\) & 0 \\
\hline
\end{tabular}

Notes:
1. M represents the largest representable value: typically this is 1.7 E 308 , unless FR is 1287 , when the value is 1 E 6145 .

For a typical vector Y , the result is:
\[
c(1 \supset Y) f(2 \supset Y) f \ldots \ldots f(n \supset Y)
\]

The shape of \(R\) is the shape of \(Y\) excluding the \(K\) th axis. If \(Y\) is a scalar then \(R\) is a scalar. If the length of the \(K\) th axis is 1 , then \(R\) is the same as \(Y\). If the length of the Kth axis is 0 , then DOMAIN ERROR is reported unless function \(f\) occurs in Table 1, in which case its identity element is returned in each element of the result.

\section*{Examples}
```

 v/0 0 1 0 0 1 0
 1
MAT
12 3
4 5 6
+/MAT
615
+\&MAT
579
+/[1]MAT
57
+/(1 2 3)(4 5 6)(7 8 9)
121518
,/'ONE' 'NESS'
ONENESS
+/\imath0
0
DOMAIN '/''

```
\[
\lambda^{\prime \prime}
\]

\section*{Reduce First:}
\(R+f f Y\)
The form \(R \leftarrow f \not f Y\) implies reduction along the first axis of \(Y\). See "Reduce:" above.

\section*{Reduce N-Wise: \(R+X f /[K] Y\)}
\(f\) must be a dyadic function. \(X\) must be a simple scalar or one-item integer array. \(Y\) may be any array whose sub-arrays along the \(K\) th axis are appropriate to function \(f\).

The axis specification is optional. If present, \(K\) must identify an axis of \(Y\). If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow X f f Y\) implies the first axis of \(Y\).
\(R\) is an array formed by applying function \(f\) between items of sub-vectors of length \(X\) taken from vectors along the K th (or implied) axis of Y .
\(X\) can be thought of as the width of a 'window' which moves along vectors drawn from the \(K\) th axis of \(Y\).

If X is zero, the result is a \((\rho \mathrm{Y})+(\rho \rho \mathrm{Y})=\imath \rho \rho \mathrm{Y}\) array of identity elements for the function \(f\). See "Identity Elements" on page 339.

If \(X\) is negative, each sub-vector is reversed before being reduced.

\section*{Examples}
```

 24
 1234
3+/24^(1+2+3)(2+3+4)
6
2+/24@ (1+2) (2+3) (3+4)
3 }
1+/24の (1) (2) (3) (4)
1234
0+/\imath4の Identity element for +
0 0 0 0 0
0x/\imath49 Identity element for x
11111
2,/24@ (1,2) (2,3) (3,4)
12 2 3 3 4
-2,/24^(2,1) (3,2) (4,3)
2 1 3 2 4 3

```
\(R+f \backslash[K] Y\)
f may be any dyadic function that returns a result. \(Y\) may be any array whose items in the sub-arrays along the \(K\) th axis are appropriate to the function \(f\).

The axis specification is optional. If present, \(K\) must identify an axis of \(Y\). If absent, the last axis of \(Y\) is implied. The form \(R \leftarrow f+Y\) implies the first axis of \(Y\).
\(R\) is an array formed by successive reductions along the \(K\) th axis of \(Y\). If \(V\) is a typical vector taken from the \(K\) th axis of \(Y\), then the Ith element of the result is determined as \(\mathrm{f} / \mathrm{I} \uparrow \mathrm{V}\).

The shape of \(R\) is the same as the shape of \(Y\). If \(Y\) is an empty array, then \(R\) is the same empty array.

\section*{Examples}
```

 v\0 0 1 0 0 1 0
 0}00111111
^\1 1 1 1 0 1 1 1
11 1 0 0 0 0
+\1 2 3 4 5
1361015
+\(1 2 3)(4 5 6)(7 8 9)
12 3 5 7 9 12 15 18

```
```

 M
 123
45
+\M
136
4 15
123
579

 +\[1]M
 123
5 }
A AB ABC ,\'ABC'
T<'ONE(TWO) BOOK(S)'
\#\T\epsilon'()'
0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0
((T\epsilon'()')\tilde{v}\not=\T\epsilon'()')/T
ONE BOOK

```

\section*{Spawn: \\ \(\{R\}+\{X\} f \& Y\)}
\& is a monadic operator with an ambivalent derived function. \& spawns a new thread in which \(f\) is applied to its argument \(Y\) (monadic case) or between its arguments \(X\) and \(Y\) (dyadic case). The shy result of this application is the number of the newly created thread.

When function f terminates, its result (if any), the thread result, is returned. If the thread number is the subject of an active DTSYNC, the thread result appears as the result of TTSYNC. If no DTSYNC is in effect, the thread result is displayed in the session in the normal fashion.

Note that \& can be used in conjunction with the each operator \({ }^{*}\) to launch many threads in parallel.

\section*{Examples}
```

 \div&4 ค Reciprocal in background
 0.25
\square<\div\&4 \& Show thread number
1
0.25
FOO\&88 R Spawn monadic function.
2 F00\&3 \rho dyadic
{NIL}\&O \rho niladic
\&\&'NIL' \& ..
X.GOO\&99 \& thread in remote space.
\&\&'\squaredl 2' \& Execute async expression.
'NS'ゅ\&'FOO' \rho .. remote
PRT\&*`|nl 9 \& PRT spaces in parallel.

```

\section*{\(\{R\}+\{X\}(f\) 日 B) \(Y\)}

The Variant operator \(\mathrm{B}^{8}\) specifies the value of an option to be used by its left operand function \(f\). An option is a named property of a function whose value in some way affects the operation of that function.

For example, the Search and Replace operators include options named IC and Modewhich respectively determine whether or not case is ignored and in what manner the input document is processed.

One of the set of options may be designated as the Principal option whose value may be set using a short-cut form of syntax as described below. For example, the Principal option for the Search and Replace operators is IC.
© and DOPT are synonymous though only the latter is available in the Classic Edition.

In Version 13.0 the Variant operator is used solely to specify options for the \(\bar{S}\) and \(\quad R\) operators but it is anticipated that its use will become more widespread in later versions.

For the operand function with right argument \(Y\) and optional left argument \(X\), the right operand \(B\) specifies the values of one or more options that are applicable to that function. B may be a scalar, a 2-element vector, or a vector of 2-element vectors which specifies values for one or more options as follows:
- If \(B\) is a 2 -element vector and the first element is a character vector, it specifies an option name in the first element and the option value (which may be any suitable array) in the second element.
- If \(B\) is a vector of 2-element vectors, each item of \(B\) is interpreted as above.
- If \(B\) is a scalar (a rank- 0 array of any depth), it specifies the value of the Principal option,

Option names and their values must be appropriate for the left operand function, otherwise an OPTION ERROR (error code 13) will be reported.

The following illustrations and examples apply to functions derived from the Search and Replace operators．

\section*{Examples of operand B}

The following expression sets the IC option to 1 ，the Mode option to＇\(D\)＇and the EOL option to＇LF＇．
```

 回('Mode' 'D')('IC' 1)('EOL' 'LF')
 The following expression sets just the EOL property to 'CR'.
回'EOL' 'CR'
The following expression sets just the Principal option
(which for the Search and Replace operators is IC) to 1.

```
    B 1

The order in which options are specified is typically irrelevant but if the same option is specified more than once，the rightmost one dominates．The following expression sets the option IC to 1 ：
B('IC' 0) ('IC' 1)

The Variant operator generates a derived function \(f\) B \(B\) and may be assigned to a name．The derived function is effectively function \(f\) bound with the option values specified by B．

The derived function may itself be used as a left operand to Variant to produce a sec－ ond derived function whose options are further modified by the second application of the operator．The following sets the same options as the first example above：
日'Mode' 'D'回IC' 1回'EOL' 'LF'

When the same option is specified more than once in this way，the outermost（right－ most）one dominates．The following expression also sets the option IC to 1 ：
\[
\text { 日'IC' OB'IC' } 1
\]

\section*{Further Examples}

The following derived function returns the location of the word 'variant' within its right argument using default values for all the options.
f1 \(\leftarrow\) 'variant' \(\quad\) S 0
f1 'The variant Variant operator'
4
It may be modified to perform a case-insensitive search:
```

412

```

This modified function may be named:
```

 f2 \leftarrow f1 目 1
 f2 'The variant Variant operator'
    ```
412

The modified function may itself be modified, in this case to revert to a case sensitive search:
```

 f3 \leftarrowf2 目 0
 f3 'The variant Variant operator'
    ```
4

This is equivalent to:
```

(f1 [1 B 0) 'The variant Variant operator'

```
\(R+\{X\}(A I) Y\)
I-Beam is a monadic operator that provides a range of system related services.
WARNING: Although documentation is provided for I-Beam functions, any service provided using I-Beam should be considered as "experimental" and subject to change - without notice - from one release to the next. Any use of I-Beams in applications should therefore be carefully isolated in cover-functions that can be adjusted if necessary.

A is an integer that specifies the type of operation to be performed as shown in the table below. Y is an array that supplies further information about what is to be done.

X is currently unused.
\(R\) is the result of the derived function.
\begin{tabular}{|l|l|}
\hline A & Derived Function \\
\hline 200 & Syntax Colouring \\
\hline 685 & Core to APLCore \\
\hline 1111 & Number of Threads \\
\hline 1112 & Parallel Execution Threshold \\
\hline 1113 & Thread Synchronisation Mechanism \\
\hline 2000 & Memory Manager Statistics \\
\hline 2010 & Update DataTable \\
\hline 2011 & Read DataTable \\
\hline 2100 & Export to Memory \\
\hline 3002 & Component Checksum Validation \\
\hline 4000 & Fork New Task \\
\hline 4001 & Change User \\
\hline 4002 & Reap Forked Tasks \\
\hline 4007 & Signal Counts \\
\hline 16807 & Random Number Generator \\
\hline
\end{tabular}

\section*{Syntax Colouring:}
\(R \leftarrow 200 \pm Y\)

This function obtains syntax colouring information for a function.
\(Y\) is a vector of character vectors containing the \(\square N R\) representation of a function or operator.
\(R\) is a vector of integer vectors with the same shape and structure of \(Y\) in which each number identifies the syntax colour element associated with the corresponding character in Y .
```

 {(\uparrow\omega),\uparrow 200I\omega} 'foo; local' 'global'
 'local<\rho\rho''hello'''
foo; local 21 21 21 19 3 31 31 31 31 31 0 0 0 0 0
global (1)
local+p\rho'hello' 31 31 31 31 31 19 23 23 4 4 4 4 4 4 4 4

```

In this example:
21 is the syntax identifier for "function name"
19 is the syntax identifier for "primitive"
3 is the syntax identifier for "white space"
31 is the syntax identifier for "local name"
7 is the syntax identifier for "global name"
23 is the syntax identifier for "idiom"

\section*{Core to APLCore: (UNIX only) X (685I) Y}

This function is used to extract a workspace from a core file and convert it to an aplcore file. It may then be possible to recover objects from the aplcore file. For further assistance in this matter, please contact support@dyalog.com.
\(X\) and \(Y\) are character vectors that specify the names of the core file and aplcore file respectively.

Core files differ between AIX and Linux, thus the APL used must be for the same Unix.

A 64-bit APL can be used to extract a 32 bit core file but a 32-bit APL cannot be used to extract a 64 -bit core file. The process maps the core file into memory so a low value of MAXWS may be appropriate if a 32 -bit APL is being used; mapped files use a separate area of the process's address space from that occupied by the workspace.

This function relies on certain markers being present in the workspace, and will operate only on core files generated by Version 12.1 or higher dated after \(4^{\text {th }}\) July 2011.

\section*{Number of Threads:}
\(R+1111\) I \(Y\)

Specifies how many threads are to be used for parallel execution.
\(Y\) is an integer that specifies the number of threads that are to be used henceforth for parallel execution. Prior to this call, the default number of threads is specified by an environment variable named APL_MAX_THREADS. If this variable is not set, the default is the number of CPUs that the machine is configured to have.
\(R\) is the previous value
Note that (unless APL_MAX_THREADS is set), the number of CPUs for which the machine is configured is returned by the first execution of 1111 I . The following expression obtains and resets the number of threads back to this value.
\{\}1111I ncpu-111111

\section*{Parallel Execution Threshold:}
\(Y\) is an integer that specifies the array size threshold at which parallel execution takes place. If a parallel-enabled function is invoked on an array whose number of elements is equal to or greater than this threshold, execution takes place in parallel. If not, it doesn't.

Prior to this call, the default value of the threshold is specified by an environment variable named APL_MIN_PARALLEL. If this variable is not set, the default is 32768 .
\(R\) is the previous value

\section*{Memory Manager Statistics: \(R \leftarrow 2000 I Y\)}

This function returns information about the state of the workspace. This I-Beam is provided for performance tuning and is VERY LIKELY to change in the next release.
\(Y\) is a simple integer scalar or vector.
The result \(R\) is an array with the same structure as \(Y\), but with values in \(Y\) replaced by the following statistics. For any value in \(Y\) outside those listed below, the result is undefined.
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 0 & Workspace available (a "quick" [WA) \\
\hline 1 & Workspace used \\
\hline 2 & Number of compactions since the workspace was loaded \\
\hline 3 & Number of garbage collections that found garbage \\
\hline 4 & Current number of garbage pockets in the workspace \\
\hline
\end{tabular}

Note that while all other operations are relatively fast, the operation to count the number of garbage pockets (4) may take a noticeable amount of time, depending upon the size and state of the workspace.

\section*{Examples}

2000I0
65374272
2000I 01234
65374272184256210

\section*{Update DataTable: \\ \(R+\{X\} 2010 I Y\)}

This function performs a block update of an instance of the ADO.NET object System.Data.DataTable. This object may only be updated using an explicit row-wise loop, which is slow at the APL level. 2010I implements an internal row-wise loop which is much faster on large arrays. Furthermore, the function handles NULL values and the conversion of internal APL data to the appropriate .Net datatype in a more efficient manner than can be otherwise achieved. These 3 factors together mean that the function provides a significant improvement in performance compared to calling the row-wise programming interface directly at the APL level.
\(Y\) is a 2,3 or 4-item array containing dtRef, Data, NullValues and Rows as described in the table below.

The optional argument \(X\) is the Boolean vector ParseF lags as described in the table below.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline dtRef & A reference to an instance of System.Data.DataTable. \\
\hline Data & A matrix with the same number of columns as the table. \\
\hline Nul IValues & \begin{tabular}{l} 
An optional vector with one element per column, containing \\
the value which should be mapped to DBNull when this \\
column is written to the DataTable.
\end{tabular} \\
\hline Rows & \begin{tabular}{l} 
Row indices (zero origin) of the rows to be updated. If not \\
provided, data will be appended to the DataTable.
\end{tabular} \\
\hline Parsef lags & \begin{tabular}{l} 
A Boolean vector, where a 1 indicates that the corresponding \\
element of Data is a string which needs to be passed to the \\
Parse method of the data type of column in question.
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}

Shown firstly for comparison is the type of code that is required to update a DataTable by looping:
```

 ZUSING\leftarrow'System' 'System.Data,system.data.dll'
 dt+\squareNEW DataTable
 ac\leftarrow{dt.Columns.Add \alpha \omega}
 'S1' 'S2' 'I1' 'D1' ac`String String Int32 DateTime
 S1 S2 I1 D1
NextYear+DateTime.Now+{DNEW TimeSpan (4\uparrow\omega)}"\imathn<365
data\leftarrow(क"\imathn),(n\rho'odd' 'even'),(10|\imathn),-NextYear
-2 4 fdata
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29
ar<{(row\leftarrowdt.NewRow).ItemArray\leftarroww \diamond dt.Rows.Add row}
t<3>\squareai \diamond ar"\downarrowdata \diamond (3>\squareai)-t
449

```

This result shows that this code can only insert roughly 100 rows per second (3دПAI returns elapsed time in milliseconds), because of the need to loop on each row and perform a noticeable amount of work each time around the loop.

2010 Ioes all the looping in compiled code:
```

dt.Rows.Clear \& Delete the rows inserted above
SetDT+2010I
t<3>\squareAI \diamond SetDT dt data \diamond (3د\squareAI)-t4

```

So in this case, using 2010 I achieves something like 10,000 rows per second.

\section*{Using ParseFlags}

Sometimes it is more convenient to handle .Net datatypes in the workspace as strings rather than as the appropriate APL array equivalent. The System.DateTime datatype (which by default is represented in the workspace as a 6 -element numeric vector) is one such example. 2010I will accept such character data and convert it to the appropriate .Net datatype internally.

If specified, the optional left argument \(X\) ( ParseF lags) instructs the system to pass the corresponding columns of Data to the Parse() method of the data type in question prior to performing the update.
```

 NextYear\leftarrow\Phi`DDateTime.Now+{DNEW TimeSpan
 (4\uparrow\omega)}*`\imathn<365
data\leftarrow(क``\imathn),(n\rho'odd' 'even'),(10|\imathn),NextYear
-2 4^data
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29
SetDT<2010I 0 0 0 1 SetDT dt data

```

\section*{Handling Nulls}

If applicable, NullValues is a vector with as many elements as the DataTable has columns, indicating the value that should be converted to System. DBNull as data is written. For example, using the same DataTable as above:
```

<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19
dt.Rows.Clear a Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

```

Above, we have declares that the string ' <null>' should be considered to be a null value in the first column, 'even' in the second column, and the integer 99 in the third.

\section*{Updating Selected Rows}

Sometimes, you may have read a very large number of rows from a DataTable, but only want to update a single row, or a very small number of rows. Row indices can be provided as the fourth element of the argument to 2010I. If you are not using Nul IValues, you can just use an empty vector as a placeholder. Continuing from the example above, we could replace the first row in our DataTable using:
```

SetDT+2010I
SetDT dt (1 4\rho'one' 'odd' 1 DateTime.Now) 0 0

```

Note
- the values must be provided as a matrix, even if you only want to update a single row,
- row indices are zero origin (the first row has number 0 ).

\section*{Warning}

If you are experimenting with writing to a DataTable, note that you should call dt.Rows.Clear each time to clear the current contents of the table. Otherwise you will end up with a very large number of rows after a while.

\section*{Read DataTable: \(R+\{X\} 2011\) I \(Y\)}

This function performs a block read from an instance of the ADO.NET object System.Data.DataTable. This object may only be read using an explicit row-wise loop, which is slow at the APL level. 2011 I implements an internal row-wise loop which is much faster on large arrays. Furthermore, the function handles NULL values and the conversion of .Net datatypes to the appropriate internal APL form in a more efficient manner than can be otherwise achieved. These 3 factors together mean that the function provides a significant improvement in performance compared to calling the row-wise programming interface directly at the APL level.
\(Y\) is a scalar or a 2-item array containing dtRef, and NullValues as described in the table below.

The optional argument \(X\) is the Boolean vector ParseFlags as described in the table below.

The result \(R\) is the array Dat a as described in the table below.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline dtRef & A reference to an instance of System.Data.DataTable. \\
\hline Data & A matrix with the same number of columns as the table. \\
\hline Nul LValues & \begin{tabular}{l} 
An optional vector with one element per column, containing \\
the value to which a DBNull in the corresponding column of \\
the DataTable should be mapped in the result array Data.
\end{tabular} \\
\hline ParseFlags & \begin{tabular}{l} 
A Boolean vector, where a 1 indicates that the corresponding \\
element of Data should be converted to a string using the \\
ToString () method of the data type of column in \\
question. It is envisaged that this argument may be extended \\
in the future, to allow other conversions - for example \\
converting Dates to a floating-point format.
\end{tabular} \\
\hline
\end{tabular}

First for comparison is shown the type of code that is required to read a DataTable by looping:
```

t<3>\squareAI \diamond data1\leftarrow\uparrow(\squaredt.Rows).ItemArray \diamond (3כ\squareAI)-t

```
191

The above expression turns the dt . Rows collection into an array using \(\bar{\square}\), and mixes the ItemArray properties to produce the result. Although here there is no explicit loop, involved, there is an implicit loop required to reference each item of the collection in succession. This operation performs at about 200 rows/sec.

2011 I does the looping entirely in compiled code and is significantly faster:
```

GetDT+2011I
t<3>\squareAI \diamond data2*GetDT dt \diamond (3>\squareAI)-t

```
25

\section*{ParseFlags Example}

In the example shown above, 2011 I created 365 instances of System.DateTime objects in the workspace. If we are willing to receive the timestamps in the form of strings, we can read the data almost an order of magnitude faster:
```

t<3>\squareAI\diamond data3↔0 0 0 1 GetDT dt \diamond (3د\squareAI)-t

```
3

The left argument to 2011 I allows you to flag columns which should be returned as the ToString () value of each object in the flagged columns. Although the resulting array looks identical to the original, it is not: The fourth column contains character vectors:
\[

\]

Depending on your application, you may need to process the text in the fourth column in some way - but the overall performance will probably still be very much better than it would be if DateTime objects were used.

\section*{Handling Nulls}

Using the DataTable produced by the corresponding example shown for 2010I it can be shown that by default null values will be read back into the APL workspace as instances of System. DBNull.
```

 GetDT+2011I>
 D<z*GetDT dt
 odd 1 21-01-2010 14:50:19
 two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

```
```

 (1 1фz).GetType
 System.DBNull System.DBNull System.DBNull

```

However, by supplying a NullValues argument to 2011 I, we can request that nulls in each column are mapped to a corresponding value of our choice; in this case, ' <null>', 'even', and 99 respectively.
```

 GetDT dt ('<null>' 'even' 99 '')
 <null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

```

\section*{Export To Memory: \\ \(R+2100 I Y\)}

This function exports the current active workspace as an in-memory .NET.Assembly.
Y may be any array and is ignored.
The result \(R\) is 1 if the operation succeeded or 0 if it failed.

\section*{Component Checksum Validation: \(\quad\{R\} \nleftarrow 3002\) I \(Y\)}

Checksums allow component files to be validated and repaired using DFCHK.
From Version 13.1 onwards, components which contain checksums are also validated on every component read.

Although not recommended, applications which favour performance over security may disable checksum validation by DFREAD using this function.
\(Y\) is an integer defined as follows:
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 0 & पFREAD will not validate checksums. \\
\hline 1 & \begin{tabular}{l} 
DFREAD will validate checksums when they are present. This is \\
the default.
\end{tabular} \\
\hline
\end{tabular}

The shy result \(R\) is the previous value of this setting.

\section*{Fork New Task: (UNIX only) \(R \leftarrow 4000 I Y\)}

Y must be is a simple empty vector but is ignored.
This function forks the current APL task. This means that it initiates a new separate copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes running on the machine, each with the same execution stack and set of APL objects and values. However, none of the external interfaces and resources in the parent process will exist in the newly forked child process.

The function will return a result in both processes.
- In the parent process, \(R\) is the process id of the child (forked) process.
- In the child process, \(R\) is a scalar zero.

The following external interfaces and resources that may be present in the parent process are not replicated in the child process:
- Component file ties
- Native file ties
- Mapped file associations
- Auxiliary Processors
- .NET objects
- Edit windows
- Clipboard entries
- GUI objects (all children of ' . ')
- I/O to the current terminal

Note that External Functions established using DNA are replicated in the child process.

The function will fail with a DOMAIN ERROR if there is more than one APL thread running.

The function will fail with a FILE ERROR 11 Resource temporarily unavailable if an attempt is made to exceed the maximum number of processes allowed per user.

\section*{Change User: (UNIX only) \(R+4001\) I \(Y\)}

Yis a character vector that specifies a valid UNIX user name. The function changes the userid (uid) and groupid (gid) of the process to values that correspond to the specified user name.

Note that it is only possible to change the user name if the current user name is root (uid=0).

This call is intended to be made in the child process after a fork ( \(4000 I \theta\) ) in a process with an effective user id of root. It can however be used in any APL process with an effective user id of root.

If the operation is successful, \(R\) is the user name specified in \(Y\).
If the operation fails, the function generates a FILE ERROR 1 Not Owner error.
If the argument to 4001 I is other than a non-empty simple character vector, the function generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generates a FILE ERROR 3 No such process.

If the argument is the same name as the current effective user, then the function returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the current process, and that effective user id is not root the function generates a F ILE ERROR 1 Not owner.

\section*{Reap Forked Tasks: (UNIX only) \(R<4002 I Y\)}

Under UNIX, when a child process terminates, it signals to its parent that it has terminated and waits for the parent to acknowledge that signal. 4002 I is the mechanism to allow the APL programmer to issue such acknowledgements.

Y must be a simple empty vector but is ignored.
The result \(R\) is a matrix containing the list of the newly-terminated processes which have been terminated as a result of receiving the acknowledgement, along with information about each of those processes as described below.
\(R[; 1]\) is the process ID (PID) of the terminated child
\(R[; 2]\) is -1 if the child process terminated normally, otherwise it is the signal number which caused the child process to terminate.
\(R[; 3]\) is \({ }^{-1}\) if the child process terminated as the result of a signal, otherwise it is the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the underlying wait3 () system call. Note that the two timevalstructs are each returned as a floating point number.

The current rusage structure contains:
```

struct rusage {
struct timeval ru utime; /* user time used */
struct timeval ru_stime; /* system time used */
long ru maxrss;- /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru-isrss; /* integral unshared stack size */
long ru-minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru-inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */
};

```

4002I may return the PID of an abnormally terminated Auxiliary Processor; APL code should check that the list of processes that have been reaped is a superset of the list of processes that have been started.
```

Example
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26] :EndFor

```
```

 \nabla tryforks;pid;fpid;rpid
    ```
    \nabla tryforks;pid;fpid;rpid
        rpids }\leftarrow\textrm{fpids}\leftarrow
        rpids }\leftarrow\textrm{fpids}\leftarrow
        :For i :In 25
        :For i :In 25
        fpid<4000I'' ^ fork() a process
        fpid<4000I'' ^ fork() a process
    \rho if the child, hang around for a while
    \rho if the child, hang around for a while
        :If fpid=0
        :If fpid=0
                    ODL 2×i
                    ODL 2×i
                    DOFF
                    DOFF
        :Else
        :Else
    A if the parent, save child's pid
    A if the parent, save child's pid
                        +fpids,+fpid
                        +fpids,+fpid
        :EndIf
        :EndIf
    :EndFor
    :EndFor
    :For i :In \imath20
    :For i :In \imath20
    DDL 3
    DDL 3
    A get list of newly terminated child processes
    A get list of newly terminated child processes
        rpid+4002I''
        rpid+4002I''
    \Omega and if not empty, make note of their pids
    \Omega and if not empty, make note of their pids
        :If O\not=~prpid
        :If O\not=~prpid
            +rpids,*rpid[;1]
            +rpids,*rpid[;1]
        :EndIf
        :EndIf
        A if all fork()'d child processes accounted for
        A if all fork()'d child processes accounted for
        :If fpids\equivfpidsnrpids
        :If fpids\equivfpidsnrpids
                :Leave ^ quit
                :Leave ^ quit
        :EndIf
        :EndIf
    \nabla
```

 \nabla
    ```

\section*{Signal Counts: (UNIX only)}
\(R \leftarrow 4007 I Y\)
\(Y\) must be a simple empty vector but is ignored.
The result \(R\) is an integer vector of signal counts. The length of the vector is system dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely on the length.

Each element is a count of the number of signals that have been generated since the last call to this function, or since the start of the process. R[1] is the number of occurrences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and so forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are counted and all other corresponding elements of \(R\) are 0 .

\section*{Thread Synchronisation Mechanism: \(\quad\) R \(<1113\) I \(Y\)}

Y is Boolean and specifies whether or not the main thread does a busy wait for the others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support Posix semaphores. Later versions of AIX do not have this restriction.
\(R\) is the previous value

\section*{Random Number Generator: \(R+16807\) I \(Y\)}

Specifies the random number generator that is to be used by Roll and Deal.
\(Y\) is an integer that specifies which random number generator is to be enabled and must be one of the numbers listed in the first column of the table below.
\(R\) is an integer that identifies the previous random number generator in use.
The 3 random number generators are as follows :
\begin{tabular}{|l|l|}
\hline Id & Algorithm \\
\hline 0 & Lehmer linear congruential generator. \\
\hline 1 & Mersenne Twister. \\
\hline 2 & Operating System random number generator. \\
\hline
\end{tabular}

Under Windows, the Operating System random number generator uses the CryptGenRandom () function. Under Unix/Linux it uses / dev/urandom [3].

The default random number generator in a CLEAR WS is 0 (Lehmer linear congruential). The default is likely to be changed to 1 (Mersenne Twister) in a future release of Dyalog APL. In preparation for this change, avoid writing code which assumes that \(\square R L\) will be a scalar integer.

The Lehmer linear congruential generator \(R N G 0\) was the only random number generator provided in versions of Dyalog APL prior to Version 13.1. The implementation of this algorithm has several limitations including limited value range ( \(2 * 31\) ), short period and non-uniform distribution (some values may appear more frequently than others). It is retained for backwards compatibility.

The Mersenne Twister algortithm RNG1 produces 64-bit values with good distribution.

The Operating System algorithm RNG2 does not support a user modifiable random number seed, so when using this scheme, it is not possible to obtain a repeatable random number series.

For further information, see "Random Link: " on page 575.

\section*{Chapter 6:}

\section*{System Functions \& Variables}

System Functions, Variables, Constants and Namespaces provide information and services within the APL environment. Their case-insensitive names begin with \(\square\).
\begin{tabular}{|c|c|c|c|c|}
\hline \(\square\) & \(\square\) & 口Á & DA & DAI \\
\hline DAN & DARBIN & DARBOUT & DAT & DAV \\
\hline DAVU & DBASE & -CLASS & -CLEAR & -CMD \\
\hline DCR & -CS & -CT & -CY & -D \\
\hline DDCT & DDF & DDIV & DDL & DDM \\
\hline DDMX & DDQ & QDR & DED & Dem \\
\hline DEN & DEX & DEXCEPTION & DEXPORT & DFAPPEND \\
\hline DFAVAIL & DFCHK & DFCOPY & DFCREATE & DFDROP \\
\hline DfERASE & DFHIST & DFHOLD & DFIX & DFLIB \\
\hline DFMT & DFNAMES & DFNUMS & DFPROPS & DFR \\
\hline DFRDAC & -FRDCI & DFREAD & DFRENAME & Dfreplace \\
\hline DFRESIZE & DFSIZE & DFSTAC & DFSTIE & DFTIE \\
\hline DFUNTIE & DFX & DINSTANCES & DIO & DKL \\
\hline DLC & DLOAD & DLOCK & DLX & DMAP \\
\hline DML & DMONITOR & UNA & DNAPPEND & UNC \\
\hline ONCREATE & DNERASE & UNEW & DNL & DNLOCK \\
\hline INNAMES & ■NNUMS & UNQ & TNR & DNREAD \\
\hline ONRENAME & - NREPLACE & DNRESIZE & TNS & -NSI \\
\hline DNSIZE & DNTIE & DNULL & DNUNTIE & DNXLATE \\
\hline DOFF & DOPT & DOR & DPATH & DPFKEY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DPP & DPROF ILE & DPW & -R & DREFS \\
\hline DRL & -RSI & -RTL & पS & USAVE \\
\hline USD & USE & USH & USHADOW & USI \\
\hline USIGNAL & DSIZE & QSM & USR & USRC \\
\hline -STACK & पSTATE & USTOP & USVC & QSVo \\
\hline पSVQ & QSVR & पSVS & DTC & DTCNUMS \\
\hline DTGET & DTHIS & DTID & DTKILL & -TNAME \\
\hline DTNUMS & DTPOOL & QTPUT & DTRACE & DTRAP \\
\hline DTREQ & DTS & DTSYNC & QUCS & DUSING \\
\hline DVF I & QVR & IWA & IWC & DWG \\
\hline IWN & IWS & QWSID & IWX & DXML \\
\hline DXSI & DXT & & & \\
\hline
\end{tabular}

\section*{System Variables}

System variables retain information used by the system in some way, usually as implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate; otherwise an error will be reported immediately.

\section*{Example}

ロIO -3
DOMAIN ERROR \(\mathrm{IIO} \leftarrow 3\)

System variables may be localised by inclusion in the header line of a defined function or in the argument list of the system function DSHADOW. When a system variable is localised, it retains its previous value until it is assigned a new one. This feature is known as "pass-through localisation". The exception to this rule is पTRAP.

A system variable can never be undefined. Default values are assigned to all system variables in a clear workspace.
\begin{tabular}{|c|c|c|}
\hline Name & Description & Scope \\
\hline \(\square\) & Character Input/Output & Session \\
\hline \(\square\) & Evaluated Input/Output & Session \\
\hline DAVU & Atomic Vector - Unicode & Namespace \\
\hline -CT & Comparison Tolerance & Namespace \\
\hline -DCT & Decimal Comp Tolerance & Namespace \\
\hline -DIV & Division Method & Namespace \\
\hline DFR & Floating-Point Representation & Workspace \\
\hline DIO & Index Origin & Namespace \\
\hline DLX & Latent Expression & Workspace \\
\hline DML & Migration Level & Namespace \\
\hline DPATH & Search Path & Session \\
\hline DPP & Print Precision & Namespace \\
\hline DPW & Print Width & Session \\
\hline -RL & Random Link & Namespace \\
\hline -RTL & Response Time Limit & Namespace \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline USM & Screen Map & Workspace \\
\hline QTRAP & Event Trap & Workspace \\
\hline QUSING & Microsoft .Net Search Path & Namespace \\
\hline QWSID & Workspace Identification & Workspace \\
\hline IWX & Window Expose & Namespace \\
\hline
\end{tabular}
 and IWS ID relate to the active workspace. All the other system variables relate to the current namespace.
\begin{tabular}{|c|c|c|}
\hline Session & Workspace & Namespace \\
\hline \(\square\) & DFR & DAVU \\
\hline \(\square\) & DLX & -CT \\
\hline DPATH & USM & -DCT \\
\hline DPW & DTRAP & DDIV \\
\hline & DWSID & DIO \\
\hline & & DML \\
\hline & & DPP \\
\hline & & DRL \\
\hline & & DRTL \\
\hline & & DUSING \\
\hline & & DWX \\
\hline
\end{tabular}

\section*{System Namespaces}

ZSE is currently the only system namespace.

\section*{System Constants}

System constants, which can be regarded as niladic system functions, return information from the system. They have distinguished names, beginning with the quad symbol, [. A system constant may not be assigned a value. System constants may not be localised or erased. System constants are summarised in the following table:
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline पÁ & Underscored Alphabetic upper case characters \\
\hline -A & Alphabetic upper case characters \\
\hline DAI & Account Information \\
\hline DAN & Account Name \\
\hline DAV & Atomic Vector \\
\hline -D & Digits \\
\hline DDM & Diagnostic Message \\
\hline पDMX & Extended Diagnostic Message \\
\hline DEN & Event Number \\
\hline QEXCEPTION & Reports the most recent Microsoft .Net Exception \\
\hline DLC & Line Count \\
\hline QNULL & Null Item \\
\hline DSD & Screen (or window) Dimensions \\
\hline DTC & Terminal Control (backspace, linefeed, newline) \\
\hline DTS & Time Stamp \\
\hline DWA & Workspace Available \\
\hline
\end{tabular}

\section*{System Functions}

System functions provide various services related to both the APL and the external environment. System functions have distinguished names beginning with the \(\square\) symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories. Each function is described in alphabetical order in this chapter

\section*{System Commands}

These functions closely emulate system commands (see "System Commands" on page 657)
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline QCLEAR & Clear workspace (WS) \\
\hline QCY & Copy objects into active WS \\
\hline QEX & Expunge objects \\
\hline QLOAD & Load a saved WS \\
\hline QNL & Name List \\
\hline DOFF & End the session \\
\hline QSAVE & Save the active WS \\
\hline
\end{tabular}

\section*{External Environment}

These functions provide access to the external environment, such as file systems, Operating System facilities, and input/output devices.
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline DARBIN & Arbitrary Input \\
\hline पARBOUT & Arbitrary Output \\
\hline DCMD & Execute the Windows Command Processor or another program \\
\hline -CMD & Start a Windows AP \\
\hline DMAP & Map a file \\
\hline -NA & Declare a DLL function \\
\hline DSH & Execute a UNIX command or another program \\
\hline DSH & Start a UNIX AP \\
\hline
\end{tabular}

\section*{Defined Functions and Operators}

These functions provide services related to defined functions and operators.
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline DAT & Object Attributes \\
\hline DCR & Canonical Representation \\
\hline DCS & Change Space \\
\hline DED & Edit one or more objects \\
\hline DEXPORT & Export objects \\
\hline DFX & Fix definition \\
\hline DLOCK & Lock a function \\
\hline QMONITOR & Monitor set \\
\hline QMONITOR & Monitor query \\
\hline UNR & Nested Representation \\
\hline UNS & Create Namespace \\
\hline DOR & Object Representation \\
\hline DPATH & Search Path \\
\hline -PROFILE & Profile Application \\
\hline DREFS & Local References \\
\hline QSHADOW & Shadow names \\
\hline QSTOP & Set Stop vector \\
\hline USTOP & Query Stop vector \\
\hline DTHIS & This Space \\
\hline DTRACE & Set Trace vector \\
\hline DTRACE & Query Trace vector \\
\hline DVR & Vector Representation \\
\hline
\end{tabular}

\section*{Error Trapping}

These functions are associated with event trapping and the system variable ITRAP. \(^{\text {. }}\)
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline DEM & Event Messages \\
\hline पSIGNAL & Signal event \\
\hline
\end{tabular}

\section*{Shared Variables}

These functions provide the means to communicate between APL tasks and with other applications.
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline\(\square S V C\) & Set access Control \\
\hline\(\square S V C\) & Query access Control \\
\hline\(\square S V O\) & Shared Variable Offer \\
\hline\(\square S V O\) & Query degree of coupling \\
\hline\(\square S V Q\) & Shared Variable Query \\
\hline\(\square S V R\) & Retract offer \\
\hline\(\square S V S\) & Query Shared Variable State \\
\hline
\end{tabular}

\section*{Object Oriented Programming}

These functions provide object oriented programming features.
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline पBASE & Base Class \\
\hline DCLASS & Class \\
\hline DDF & Display Format \\
\hline DFIX & Fix \\
\hline DINSTANCES & Instances \\
\hline पNEW & New Instance \\
\hline DSRC & Source \\
\hline DTHIS & This \\
\hline
\end{tabular}

\section*{Graphical User Interface}

These functions provide access to GUI components.
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline\(\square D Q\) & Await and process events \\
\hline\(\square N Q\) & Place an event on the Queue \\
\hline\(\square W C\) & Create GUI object \\
\hline\(\square W G\) & Get GUI object properties \\
\hline\(\square W N\) & Query GUI object Names \\
\hline IWS & Set GUI object properties \\
\hline\(\square W X\) & Expose GUI property names \\
\hline
\end{tabular}

\section*{External Variables}

These functions are associated with using external variables.
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline QXT & Associate External variable \\
\hline QXT & Query External variable \\
\hline QFHOLD & External variable Hold \\
\hline
\end{tabular}

\section*{Component Files}

The functions provide the means to store and retrieve data on APL Component Files. See User Guide for further details.
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline DFAPPEND & Append a component to File \\
\hline DFAVAIL & File system Availability \\
\hline DFCHK & File Check and Repair \\
\hline DFCOPY & Copy a File \\
\hline DFCREATE & Create a File \\
\hline DFDROP & Drop a block of components \\
\hline DFERASE & Erase a File \\
\hline DFHIST & File History \\
\hline DFHOLD & File Hold \\
\hline DFLIB & List File Library \\
\hline DFNAMES & Names of tied Files \\
\hline DFNUMS & Tie Numbers of tied Files \\
\hline DFPROPS & File Properties \\
\hline DFRDAC & Read File Access matrix \\
\hline DFRDCI & Read Component Information \\
\hline DFREAD & Read a component from File \\
\hline Dfrename & Rename a File \\
\hline OFREPLACE & Replace a component on File \\
\hline DFRESIZE & File Resize \\
\hline DFSIZE & File Size \\
\hline DFSTAC & Set File Access matrix \\
\hline DFSTIE & Share-Tie a File \\
\hline DFTIE & Tie a File exclusively \\
\hline Dfuntie & Untie Files \\
\hline
\end{tabular}

\section*{Native Files}

The functions provide the means to store and retrieve data on native files.
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline QNAPPEND & Append to File \\
\hline QNCREATE & Create a File \\
\hline DNERASE & Erase a File \\
\hline  & Lock a region of a file \\
\hline DNNAMES & Names of tied Files \\
\hline QNNUMS & Tie Numbers of tied Files \\
\hline UNREAD & Read from File \\
\hline QNRENAME & Rename a File \\
\hline ONREPLACE & Replace data on File \\
\hline पNRESIZE & File Resize \\
\hline UNSIZE & File Size \\
\hline -NTIE & Tie a File exclusively \\
\hline QNUNTIE & Untie Files \\
\hline DNXLATE & Specify Translation Table \\
\hline
\end{tabular}

\section*{Threads}

These functions are associated with threads created using the Spawn operator (\&).
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline DTCNUMS & Thread Child Numbers \\
\hline DTGET & Get Tokens \\
\hline DTID & Current Thread Identity \\
\hline DTKILL & Kill Threads \\
\hline DTNAME & Current Thread Name \\
\hline DTNUMS & Thread Numbers \\
\hline DTPOOL & Token Pool \\
\hline DTPUT & Put Tokens \\
\hline DTREQ & Token Requests \\
\hline DTSYNC & Wait for Threads to Terminate \\
\hline
\end{tabular}

\section*{Search and Replace}

These operators implement Search and Replace functionality utilising the opensource regular-expression search engine PCRE.
\begin{tabular}{|l|l|}
\hline Name & Description \\
\hline\(\square R\) & Replace \\
\hline\(\square S\) & Search \\
\hline\(\square O P T\) & Variant Operator \\
\hline
\end{tabular}

\section*{Miscellaneous}

These functions provide various miscellaneous services.
\begin{tabular}{|c|c|}
\hline Name & Description \\
\hline DAVU & Atomic Vector - Unicode \\
\hline DDL & Delay execution \\
\hline TDR & Data Representation (Monadic) \\
\hline DDR & Data Representation (Dyadic) \\
\hline DFMT & Resolve display \\
\hline DFMT & Format array \\
\hline DKL & Key Labels \\
\hline TNC & Name Classification \\
\hline QNS I & Namespace Indicator \\
\hline DPFKEY & Programmable Function Keys \\
\hline DRSI & Space Indicator \\
\hline USI & State Indicator \\
\hline DSIZE & Size of objects \\
\hline \SR & Screen Read \\
\hline पSTACK & Report Stack \\
\hline -STATE & Return State of an object \\
\hline DUCS & Unicode Convert \\
\hline DVF I & Verify and Fix numeric \\
\hline DXSI & Extended State Indicator \\
\hline
\end{tabular}

\section*{Character Input/Output:}
\(\square\) is a variable which communicates between the user's terminal and APL. Its behaviour depends on whether it is being assigned or referenced.

When is assigned with a vector or a scalar, the array is displayed without the normal ending new-line character. Successive assignments of vectors or scalars to \(\square\) without any intervening input or output cause the arrays to be displayed on the same output line.

\section*{Example}
\(2+2=4\) 片 \(2+2^{\prime} \diamond \square^{\prime}={ }^{\prime} \diamond \square \leftarrow 4\)
Output through \(\square\) is independent of the print width in \(\square P W\). The way in which lines exceeding the print width of the terminal are treated is dependent on the characteristics of the terminal. Numeric output is formatted in the same manner as direct output (see "Display of Arrays" on page 11).

When is assigned with a higher-order array, the output is displayed in the same manner as for direct output except that the print width \(\square \mathrm{PW}\) is ignored.

When \(\square\) is referenced, terminal input is expected without any specific prompt, and the response is returned as a character vector.

If the \(\square\) request was preceded by one or more assignments to \(\square\) without any intervening input or output, the last (or only) line of the output characters are returned as part of the response.

\section*{Example}
\[
\text { mat }<\uparrow \text { ब }
\]

\section*{Examples}
\(\square+\) 'OPTION : ' \(\diamond \mathrm{R}+\square\)
OPTION : INPUT
R
OPTION : INPUT
pR
14

The output of simple arrays of rank greater than 1 through [ includes a new-line character at the end of each line. Input through \(\square\) includes the preceding output through \(\square\) since the last new-line character. The result from 】, including the prior output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while \(\square\) is awaiting input, and execution is then suspended (unless the interrupt is trapped):
\(R+\square\)
(Interrupt)
INPUT INTERRUPT
A time limit is imposed on input through \(\square\) if \(\square R T L\) is set to a non-zero value:
```

 \squareRTL&5 \diamond \square<'PASSWORD ? ' \diamond R&\square
 PASSWORD ?
TIMEOUT
ORTL\leftarrow5 \diamond D<'PASSWORD : '\diamond R*~

```

The TIMEOUT interrupt is a trappable event.

\section*{Evaluated Input/Output:}
\(\square\) is a variable which communicates between the user's terminal and APL. Its behaviour depends on whether it is being assigned or referenced.

When \(\square\) is assigned an array, the array is displayed at the terminal in exactly the same form as is direct output (see "Display of Arrays" on page 11).

\section*{Example}
```

 \square<2+\imath5
 34567
D<2 4\rho'WINEMART'
WINE
MART

```

When \(\square\) is referenced, a prompt ( \(\square:\) ) is displayed at the terminal, and input is requested. The response is evaluated and an array is returned if the result is valid. If an error occurs in the evaluation, the error is reported as normal (unless trapped by a OTRAP definition) and the prompt ( \(\square\) : ) is again displayed for input. An EOF interrupt reports INPUT INTERRUPT and the prompt ( \(\square\) : ) is again displayed for input. A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt ( \(\mathrm{C}:\) : is redisplayed for input.

\section*{Examples}
```

 10\times\square+2
 \square:
\imath
3040 50
2+\square
\square:
X
VALUE ERROR
X
^
\square:
2+\imath3
567

```

A system command may be entered. The system command is effected and the prompt is displayed again (unless the system command changes the environment):
```

 \rho3,\square
 \square:
)WSID
WS/MYWORK
\square:
)SI
\square
\square:
)CLEAR
CLEAR WS

```

If the response to a \(\square\) : prompt is an abort statement \((\rightarrow)\), the execution will be aborted:
\(123=\)
]:

A trap definition on interrupt events set for the system variable DTRAP in the range 1000-1008 has no effect whilst awaiting input in response to a \(\square\) : prompt.

\section*{Example}

DTRAP↔(11 'C' '''ERROR''')(1000 'C' '''STOP''')
\(2+\square\)
—:
(Interrupt Signal)
INTERRUPT
—:
'C' +2
ERROR
A time limit set in system variable \(\operatorname{DRTL}\) has no effect whilst awaiting input in response to a \(\square\) : prompt.

\section*{Underscored Alphabetic Characters:}
\(R+\square A\)
पA is a deprecated feature. Dyalog strongly recommends that you move away from the use of \(\square \underline{A}\) and of the underscored alphabet itself, as these symbols now constitute the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, D \(\underline{A}\) was a simple character vector, composed of the letters of the alphabet with underscores. If the Dyalog Alt font was in use, these symbols displayed as additional National Language characters.

\section*{Version 10.1 and Earlier}

\section*{DA}

ABCDEFGHIIJKLMNOPQRSTUVWXYZ
For compatibility with previous versions of Dyalog APL, functions that contain references to \(\square \underline{A}\) will continue to return characters with the same index in \(\square A V\) as before. However, the display of \(\square \underline{A}\) is now \(\square A ́ A\), and the old underscored symbols appear as they did in previous Versions when the Dyalog Alt font was in use.

Current Version
DÁ
ÁÂÃÇÈ ÊËİÍÎİĐĐòóôõÙÚÛÝpãiðòõ

\section*{Alphabetic Characters:}

This is a simple character vector, composed of the letters of the alphabet.

\section*{Example}

DA
ABCDEFGHIJKLMNOPQRSTUVWXYZ

\section*{Account Information:}

\section*{\(R+\square A I\)}

This is a simple integer vector, whose four elements are:
\begin{tabular}{|l|l|}
\hline\(\square A I[1]\) & user identification. \(^{1}\) \\
\hline\(\square A I[2]\) & compute time for the APL session in milliseconds. \\
\hline\(\square A I[3]\) & connect time for the APL session in milliseconds. \\
\hline\(\square A I[4]\) & keying time for the APL session in milliseconds. \\
\hline
\end{tabular}

Elements beyond 4 are not defined but reserved.

\section*{Example}

DAI
52739629242162814831
\({ }^{1}\) Under Windows, this is the aplnid (network ID from configuration dialog box).Under UNIX and LINUX, this is the UID of the account.

\section*{Account Name:}

This is a simple character vector containing the user (login) name.

\section*{Example}

DAN
Pete
pDAN
4

\section*{Arbitrary Output: \\ \{X\}DARBOUT Y}

This transmits \(Y\) to an output device specified by \(X\).
Under Windows, the use of पARBOUT to the screen or to RS232 ports is not supported.
\(Y\) may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items of the simple arrays of \(Y\) must each be a character or a number in the range 0 to 255 . Numbers are sent to the output device without translation. Characters undergo the standard DAV to ASCII translation. If \(Y\) is an empty vector, no codes are sent to the output device.
\(X\) defines the output device. If \(X\) is omitted, output is sent to standard output (usually the screen). If \(X\) is supplied, it must be a simple numeric scalar or a simple text vector.

If it is a numeric scalar, it must correspond to a DOS handle or UNIX stream number.
If it is a text vector, it must correspond to a valid device or file name.
You must have permission to write to the chosen device.

\section*{Examples}

Write ASCII digits ' 123 ' to UNIX stream 9:
9 DARBOUT 495051
Write ASCII characters ' \(A B C\) ' to MYF ILE:
'MYFILE' DARBOUT 'ABC'
Beep 3 times:
DARBOUT 777
Prompt for input:
```

\square\& 'Prompt: ' \diamond पarbout 12 \diamond ans*\square

```

\section*{Attributes:}

\section*{\(R+\{X\}\) DAT \(Y\)}
\(Y\) can be a simple character scalar, vector or matrix, or a vector of character vectors representing the names of 0 or more defined functions or operators. Used dyadically, this function closely emulates the APL2 implementation. Used monadically, it returns information that is more appropriate for Dyalog APL.
\(Y\) specifies one or more names. If \(Y\) specifies a single name as a character scalar, a character vector, or as a scalar enclosed character vector, the result \(R\) is a vector. If \(Y\) specifies one or more names as a character matrix or as a vector of character vectors \(R\) is a matrix with one row per name in \(Y\).

\section*{Monadic Use}

If \(X\) is omitted, \(R\) is a 4-element vector or a 4 column matrix with the same number of rows as names in \(Y\) containing the following attribute information:
\(R[1]\) or \(R[; 1]\) : Each item is a 3-element integer vector representing the function header syntax:
\begin{tabular}{|l|l|l|}
\hline 1 & Function result & \begin{tabular}{l}
0 if the function has no result \\
1 if the function has an explicit result \\
-1 if the function has a shy result
\end{tabular} \\
\hline 2 & Function valence & \begin{tabular}{l}
0 if the object is a niladic function or not a function \\
1 if the object is a monadic function \\
2 if the object is a dyadic function \\
-2 if the object is an ambivalent function
\end{tabular} \\
\hline 3 & Operator valence & \begin{tabular}{l}
0 if the object is not an operator \\
1 if the object is a monadic operator \\
2 if the object is a dyadic operator
\end{tabular} \\
\hline
\end{tabular}

The following values correspond to the syntax shown alongside:

\(R[2]\) or \(R[2]\) : Each item is the (DTS form) timestamp of the time the function was last fixed.
\(R[3]\) or \(R[\); 3]: Each item is an integer reporting the current DLOCK state of the function:
\begin{tabular}{|l|l|}
\hline 0 & Not locked \\
\hline 1 & Cannot display function \\
\hline 2 & Cannot suspend function \\
\hline 3 & Cannot display or suspend \\
\hline
\end{tabular}
\(R[4]\) or \(R[; 4]\) : Each item is a character vector - the network ID of the user who last fixed (edited) the function.

\section*{Example}


\section*{Dyadic Use}

The dyadic form of DAT emulates APL2. It returns the same rank and shape result containing information that matches the APL2 implementation as closely as possible.

The number of elements or columns in \(R\) and their meaning depends upon the value of \(X\) which may be \(1,2,3\) or 4 .

If X is \(1, \mathrm{R}\) specifies valences and contains 3 elements (or columns) whose meaning is as follows:
\begin{tabular}{|l|l|l|}
\hline 1 & Explicit result & \begin{tabular}{l}
1 if the object has an explicit result or is a variable \\
0 otherwise
\end{tabular} \\
\hline 2 & Function valence & \begin{tabular}{l}
0 if the object is a niladic function or not a function \\
1 if the object is a monadic function \\
2 if the object is an ambivalent function
\end{tabular} \\
\hline 3 & Operator valence & \begin{tabular}{l}
0 if the object is not an operator \\
1 if the object is a monadic operator \\
2 if the object is a dyadic operator
\end{tabular} \\
\hline
\end{tabular}

If \(X\) is 2 , \(R\) specifies fix times (the time the object was last updated) for functions and operators named in Y . The time is reported as 7 integer elements (or columns) whose meaning is as follows. The fix time reported for names in \(Y\) which are not defined functions or operators is 0 .
\begin{tabular}{|l|l|}
\hline 1 & Year \\
\hline 2 & Month \\
\hline 3 & Day \\
\hline 4 & Hour \\
\hline 5 & Minute \\
\hline 6 & Second \\
\hline 7 & Milliseconds (this is always reported as 0 ) \\
\hline
\end{tabular}

If \(X\) is \(3, R\) specifies execution properties and contains 4 elements (or columns) whose meaning is as follows:
\begin{tabular}{|l|l|l|}
\hline 1 & Displayable & \begin{tabular}{l}
0 if the object is displayable \\
1 if the object is not displayable
\end{tabular} \\
\hline 2 & Suspendable & \begin{tabular}{l}
0 if execution will suspend in the object \\
1 if execution will not suspend in the object
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
Weak Interrupt \\
behaviour
\end{tabular} & \begin{tabular}{l}
0 if the object responds to interrupt \\
1 if the object ignores interrupt
\end{tabular} \\
\hline 4 & & (always 0 ) \\
\hline
\end{tabular}

If \(X\) is \(4, R\) specifies object size and contains 2 elements (or columns) which both report the CSIZE of the object.

\section*{Atomic Vector:}

DAV is a deprecated feature and is replaced by DUCS.
This is a simple character vector of all 256 characters in the Classic Dyalog APL character.

In the Classic Edition the contents of \(\square A V\) are defined by the Output Translate Table.
In the Unicode Edition, the contents of \(\square \mathrm{AV}\) are defined by the system variable DAVU.

\section*{Examples}
\(\operatorname{DAV[48+210]~}\)
0123456789
5 52p12 \(\downarrow\) Dav






\section*{Atomic Vector - Unicode:}
\(\square A V U\) specifies the contents of the atomic vector, \(\square A V\), and is used to translate data between Unicode and non-Unicode character formats when required, for example when:
- Unicode Edition loads or copies a Classic Edition workspace or a workspace saved by a Version prior to Version 12.0.
- Unicode Edition reads character data from a non-Unicode component file, or receives data type 82 from a TCP socket.
- Unicode Edition writes data to a non-Unicode component file
- Unicode Edition reads or writes data from or to a Native File using conversion code 82.
- Classic Edition loads or copies a Unicode Edition workspace
- Classic Edition reads character data from a Unicode component file, or receives data type 80,160 , or 320 from a TCP socket.
- Classic Edition writes data to a Unicode component file.
\(\square A V U\) is an integer vector with 256 elements, containing the Unicode code points which define the characters in DAV.

\section*{Note}

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is stored internally as an index into the atomic vector, DAV . When a character is displayed or printed, the index in DAV is translated to a number in the range 0-255 which represents the index of the character in an Extended ASCII font. This mapping is done by the Output Translate Table which is user-configurable. Note that although ASCII fonts typically all contain the same symbols in the range \(0-127\), there are a number of different Extended ASCII font layouts, including proprietary APL fonts, which provide different symbols in positions 128-255. The actual symbol that appears on the screen or on the printed page is therefore a function of the Output Translate Table and the font in use. Classic Edition provides two different fonts (and thus two different पAV layouts) for use with the Development Environment, named Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores

The default value of \(\square\) AVU corresponds to the use of the Dyalog Alt Output Translate Table and font in the Classic Edition or in earlier versions of Dyalog APL.
```

 2 130\squareAVU[97+\imath26]
 193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
\squareUCS 2 13\rho口AVU[97+\imath26]
ÁÂÃÇÈÊËİÍÎÏĐÒ
ÓÔÕUUÚÛÝpã iðòõ

```

DAVU has namespace scope and can be localised, in order to make it straightforward to write access functions which receive or read data from systems with varying atomic vectors. If you have been using Dyalog Alt for most things but have some older code which uses underscores, you can bring this code together in the same workspace and have it all look "as it should" by using the Alt and Std definitions for पAVU as you copy each part of the code into the same Unicode Edition workspace.
```

)COPY avu.dws Std.पAVU
 C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007
2 130DAVU[97+\imath26]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
94229423
ZUCS 2 13pDAVU[97+r26]
ABCDEFGHIJKKLM
NOPQRSTUVWXYZ

```

\section*{Rules for Conversion on Import}

When the Unicode Edition imports APL objects from a non-Unicode source, function comments and character data of type 82 are converted to Unicode. When the Classic Edition imports APL objects from a Unicode source, this translation is performed in reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a workspace that contains its own value of DAVU) the value of \#. पAVU (the value of DAVU in the root) in the source workspace is used. Otherwise, such as when APL objects are imported from a pre-Version 12 workspace, from a component file, or from a TCP socket, the local value of \(\square \mathrm{AVU}\) in the target workspace is used.

\section*{Rules for Conversion on Export}

When the Unicode Edition exports APL objects to a non-Unicode destination, such as a non-Unicode Component File or non-Unicode TCPSocket Object, function comments (in \(\overline{0} 0\) s) and character data of type 82 are converted to \(\square A V\) indices using the local value of AAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a Unicode Component File or Unicode TCPSocket Object, function comments (in DORs) and character data of type 82 are converted to Unicode using the local value of DAVU.

In all cases, if a character to be translated is not defined in DAVU, a TRANSLATION ERROR (event number 92 ) will be signalled.

\section*{Base Class: \\ R-DBASE. Y}
\(\square B A S E\) is used to access the base class implementation of the name specified by Y .
\(Y\) must be the name of a Public member (Method, Field or Property) that is provided by the Base Class of the current Class or Instance.
—BASE is typically used to call a method in the Base Class which has been superseded by a Method in the current Class.

Note that \(\square\) BASE \(Y\) is special syntax and any direct reference to \(\square\) BASE on its own or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot and supersedes its Speak method. DomesticParrot. Speak calls the Speak method in its Base Class Parrot, via \(\square\) BASE.
```

:Class Parrot: Bird
\nabla R+Speak
:Access Public
R\leftarrow'Squark!'
\nabla
:EndClass ค Parrot
:Class DomesticParrot: Parrot
R\&Speak
:Access Public
R-पBASE.Speak,' Who''s a pretty boy, then!'
\nabla
:EndClass ^ DomesticParrot
Maccaw-पNEW Parrot
Maccaw.Speak
Squark!
Polly-DNEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

```

\section*{Class: \(R+\{X\} \square C L A S S ~ Y ~\)}

\section*{Monadic Case}

Monadic DCLASS returns a list of references to Classes and Interfaces that specifies the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.
\(R\) is a vector or vectors whose items represent nodes in the Class hierarchy of \(Y\). Each item of \(R\) is a vector whose first item is a Class reference and whose subsequent items (if any) are references to the Interfaces supported by that Class.

\section*{Example 1}

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

\section*{Animal}

Bird (derived from Animal)
Parrot (derived from Bird)
:Class Animal
...
: EndClass \(ค\) Animal
:Class Bird: Animal
...
:EndClass ค Bird
:Class Parrot: Bird
...
:EndClass ค Parrot


DCLASS" Parrot Animal
\#.Parrot \#.Bird \#.Animal \#.Animal

\section*{Example 2}

The Penguin Class example (see "Penguin Class Example" on page 182) illustrates the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally supports the BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members from both.

Pingo+ CNEW Penguin
DCLASS Pingo
\#.Penguin \#.FishBehaviour \#.BirdBehaviour \#.Animal

\section*{Dyadic Case}

If \(X\) is specified, \(Y\) must be a reference to an Instance of a Class and \(X\) is a reference to an Interface that is supported by Instance \(Y\) or to a Class upon which Instance \(Y\) is based.

In this case, \(R\) is a reference to the implementation of Interface \(X\) by Instance \(Y\), or to the implementation of (Base) Class \(X\) by Instance \(Y\), and is used as a cast in order to access members of \(Y\) that correspond to members of Interface of (Base) Class \(X\).

\section*{Example 1:}

Once again, the Penguin Class example "Penguin Class Example" on page 182 is used to illustrate the use of Interfaces.
```

 Pingo+\squareNEW Penguin
 OCLASS Pingo
 #.Penguin #.FishBehaviour #.BirdBehaviour #.Animal
 (FishBehaviour DCLASS Pingo).Swim
 I can dive and swim like a fish
(BirdBehaviour DCLASS Pingo).Fly
Although I am a bird, I cannot fly
(BirdBehaviour DCLASS Pingo).Lay
I lay one egg every year
(BirdBehaviour DCLASS Pingo).Sing
Croak, Croak!

```

\section*{Example 2:}

This example illustrates the use of dyadic DCLASS to cast an Instance to a lower Class and thereby access a member in the lower Class that has been superseded by another Class higher in the tree.
```

 Polly-\squareNEW DomesticParrot
 Polly.Speak
 Squark! Who's a pretty boy, then!

```

Note that the Speak method invoked above is the Speak method defined by Class DomesticParrot, which supersedes the Speak methods of sub-classes Parrot and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes Parrot and Bird.
(Parrot DCLASS Polly). Speak
Squark!
(Bird CCLASS Polly).Speak
Tweet, tweet!

\section*{Clear Workspace:}

A clear workspace is activated, having the name CLEAR WS. The active workspace is lost. All system variables assume their default values. The maximum size of workspace is available.

The contents of the session namespace DSE are not affected.

\section*{Example}

DCLEAR
DWSID
CLEAR WS

\section*{Execute Windows Command: \(R-\) CMD \(Y\)}
—CMD executes a Windows Command Processor or UNIX shell or starts another Windows application program. \(\operatorname{ZCMD}\) is a synonym of \(\overline{2} H\). Either system function may be used in either environment (Windows or UNIX) with exactly the same effect. DCMD is probably more natural for the Windows user. This section describes the behaviour of पCMD and DSH under Windows. See "Execute (UNIX) Command: " on page 580 for a discussion of the behaviour of these system functions under UNIX.

The system commands ) CMD and ) SH provide similar facilities but may only be executed from the APL Session.

\section*{Executing a Windows Command}

If \(Y\) is a simple character vector, पCMD invokes the Windows Command Processor (normally cmd.exe) and passes \(Y\) to it for execution. \(R\) is a vector of character vectors containing the result of the command. Each element in \(R\) corresponds to a line of output produced by the command.

\section*{Example}
```

Z-\squareCMD'DIR'

```
pZ
8
\(\uparrow Z\)
Volume in drive \(C\) has no label
Directory of \(\mathrm{C}: \ D Y A L O G\)
\begin{tabular}{lcccc} 
& & <DIR> & \(5-07-89\) & \(3.02 p\) \\
<DIR & \(5-07-89\) & \(3.02 p\) \\
SALES & DWS & 110092 & \(5-07-89\) & \(3.29 p\) \\
EXPENSES & DWS & 154207 & \(5-07-89\) & \(3.29 p\)
\end{tabular}

If the command specified in \(Y\) already contains the redirection symbol (>) the capture of output through a pipe is avoided and the result \(R\) is empty. If the command specified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly redirect input and output to the console. If this is done, APL detects the presence of a ">" in the command line, runs the command processor in a visible window, and does not direct output to the pipe. If you fail to do this your system will appear to hang because there is no mechanism for you to receive or respond to the prompt.

\section*{Example}
DCMD 'DATE <CON >CON'
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(COMMAND PROMPT window disappears)

\section*{Implementation Notes}

The right argument of CCMD is simply passed to the appropriate command processor for execution and its output is received using an unnamed pipe.

By default, CCMD will execute the string ( \('\) cmd.exe /c', \(Y\) ); where \(Y\) is the argument given to \(\overline{C C M D}\). However, the implementation permits the use of alternative command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name of your command processor and any parameters that it requires. The latter specifies a string which may be required. If CMD_PREFIX is not defined, it defaults to the name defined by the environment variable COMSPEC followed by "/c". If COMSPEC is not defined, it defaults to cmd. exe. If CMD_POSTFIX is not defined, it defaults to an empty vector.
—CMD treats certain characters as having special meaning as follows:
\begin{tabular}{|r|l|}
\hline\(\#\) & marks the start of a trailing comment, \\
\hline\(;\) & divides the command into sub-commands, \\
\hline\(>\) & \begin{tabular}{l} 
if found within the last sub-command, causes DCMD to use a visible \\
window.
\end{tabular} \\
\hline
\end{tabular}

If you simply wish to open a Command Prompt window, you may execute the command as a Windows Program (see below). For example:
पCMD 'cmd.exe' ''

\section*{Executing a Windows Program}

If \(Y\) is a 2-element vector of character vectors, \(\square C M D\) starts the executable program named by \(\mathrm{Y}[1\) ] with the initial window parameter specified by \(\mathrm{Y}[2\) ]. The shy result is an integer scalar containing the window handle allocated by the window manager.

Y[1] must specify the name or complete pathname of an executable program. If the name alone is specified, Windows will search the following directories:
1. the current directory,
2. the Windows directory,
3. the Windows system directory,
4. the directories specified by the PATH variable,
5. the list of directories mapped in a network.

Note that \(Y\) [1] may contain the complete command line, including any suitable parameters for starting the program. If Windows fails to find the executable program, CCMD will fail and report FILE ERROR 2.
\(Y\) [2] specifies the window parameter and may be one of the following. If not, a DOMAIN ERROR is reported.
\begin{tabular}{|l|l|}
\hline 'Normal' & \begin{tabular}{l} 
Application is started in a normal window, which is given \\
the input focus
\end{tabular} \\
\hline 'Unfocused' & \begin{tabular}{l} 
Application is started in a normal window, which is NOT \\
given the input focus
\end{tabular} \\
\hline 'Hidden' & Application is run in an invisible window \\
\hline \begin{tabular}{l} 
'Minimized' \\
'Minimised'
\end{tabular} & \begin{tabular}{l} 
Application is started as an icon which is NOT given the \\
input focus
\end{tabular} \\
\hline \begin{tabular}{l} 
'Maximized' \\
'Maximised'
\end{tabular} & \begin{tabular}{l} 
Application is started maximized (full screen) and is given \\
the input focus
\end{tabular} \\
\hline
\end{tabular}

An application started by DCMD may ONLY be terminated by itself or by the user. There is no way to close it from APL. Furthermore, if the window parameter is HIDDEN, the user is unaware of the application (unless it makes itself visible) and has no means to close it.

\section*{Examples}

Path 'c: \Program Files \Microsoft Office\Office\' \(\square-\square C M D\) (Path,'excel.exe') ''

Used dyadically, पCMD starts an Auxiliary Processor. The effect, as far as the APL workspace is concerned, is identical under both Windows and UNIX, although the method of implementation differs. DCMD is a synonym of \(\square \mathrm{SH}\). Either function may be used in either environment (Windows or UNIX) with exactly the same effect. —CMD is probably more natural for the Windows user. This section describes the behaviour of DCMD and ISH under Windows. See "Start UNIX Auxiliary Processor: " on page 581 for a discussion of the behaviour of these system functions under UNIX.
\(X\) must be a simple character vector containing the name (or pathname) of a Dyalog APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under Windows the contents of \(Y\) are ignored.
—CMD loads the Auxiliary Processor into memory. If no other APs are currently running, DCMD also allocates an area of memory for communication between APL and its APs.

The effect of starting an AP is that one or more external functions are defined in the workspace. These appear as locked functions and may be used in exactly the same way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are passed to the AP for processing via the communications area described above. APL halts whilst the AP is processing, and waits for a result. Under Windows, unlike under UNIX, it is not possible for external functions to run in parallel with APL.

\section*{Canonical Representation:}

\section*{\(R-\square C R \quad Y\)}
\(Y\) must be a simple character scalar or vector which represents the name of a defined function or operator.

If \(Y\) is a name of a defined function or operator, \(R\) is a simple character matrix. The first row of \(R\) is the function or operator header. Subsequent rows are lines of the function or operator. \(R\) contains no unnecessary blanks, except for leading indentation of control structures, trailing blanks that pad each row, and the blanks in comments. If \(Y\) is the name of a variable, a locked function or operator, an external function, or is undefined, \(R\) is an empty matrix whose shape is 00 .

\section*{Example}
\(\nabla R\)-MEAN \(X\)
A Arithmetic mean
[1] \(R \leftarrow(+/ X) \div \rho X\)
[2]
\(+F-\square C R\) 'MEAN'
R+MEAN X \(\quad\) ค Arithmetic mean \(R \leftarrow(+/ X) \div \rho X\)
pF
230
The definition of \(\square C R\) has been extended to names assigned to functions by specification \((\leftarrow)\), and to local names of functions used as operands to defined operators.

If Y is a name assigned to a primitive function, R is a one-element vector containing the corresponding function symbol. If \(Y\) is a name assigned to a system function, \(R\) is a one element nested array containing the name of the system function.

\section*{Examples}

PLUS \(\leftarrow+\)
\(+F-\square C R ' P L U S '\)
\(+\)
pF
1
\(C-\square C R\)
\(C^{\prime} C^{\prime}\)
DCR
\(\rho C^{\prime} C^{\prime}\)
1
```

 \nablaR+CONDITION (FN1 ELSE FN2) X
 [1] }->\mathrm{ CONDITION/L1
[2] R<FN2 X \diamond->0
[3] L1:R\&FN1 X
[4] \nabla
2 ISTOP 'ELSE'
(X\geq0) L ELSE 「 X\&-2.5
ELSE[2]
X
-2.5
OCR'FN2'
「
\squareLC
-2

```

If \(Y\) is a name assigned to a derived function, \(R\) is a vector whose elements represent the arrays, functions, and operators from which \(Y\) was constructed. Constituent functions are represented by their own \(\square C R s\), so in this respect the definition of \(\square C R\) is recursive. Primitive operators are treated like primitive functions, and are represented by their corresponding symbols. Arrays are represented by themselves.

\section*{Example}
\(B O X \leftarrow 2 \quad 2 \circ \rho\)
\(+F+\square C R ' B O X '\)
\(22 \circ \rho\)
pF
3
]display F


If \(Y\) is a name assigned to a defined function, \(R\) is the \(\square C R\) of the defined function. In particular, the name that appears in the function header is the name of the original defined function, not the assigned name \(Y\).

\section*{Example}

AVERAGE - MEAN
DCR'AVERAGE'
R-MEAN X \(\quad\) A Arithmetic mean \(R \leftarrow(+/ X) \div \rho X\)

\section*{Change Space: \(\{R\}-\{X\} \square C S \quad Y\)}

Y must be namespace reference (ref) or a simple character scalar or vector identifying the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of character vectors identifying zero or more workspace objects to be exported into the namespace Y .

The identifiers in \(X\) and \(Y\) may be simple names or compound names separated by '. ' and including the names of the special namespaces 'ISE', '\#', and '\#\#'.

The result R is the full name (starting \#.) of the space in which the function or operator was executing prior to the CCS .

DCS changes the space in which the current function or operator is running to the namespace \(Y\) and returns the original space, in which the function was previously running, as a shy result. After the \(\square C S\), references to global names (with the exception of those specified in X ) are taken to be references to global names in Y. References to local names (i.e. those local to the current function or operator) are, with the exception of those with name class 9 , unaffected. Local names with name class 9 are however no longer visible.

When the function or operator terminates, the calling function resumes execution in its original space.

The names listed in X are temporarily exported to the namespace Y . If objects with the same name exist in \(Y\), these objects are effectively shadowed and are inaccessible. Note that Dyadic DCS may be used only if there is a traditional function in the state indicator (stack). Otherwise there would be no way to retract the export. In this case (for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling \(\operatorname{CCS}\) with an empty argument \(Y\) obtains the namespace in which a function is currently executing.

\section*{Example}

This simple example illustrates how DCS may be used to avoid typing long pathnames when building a tree of GUI objects. Note that the objects NEW and OPEN are created as children of the FILE menu as a result of using DCS to change into the F.MB.FILE namespace.
```

\nabla MAKE_FORM;F;OLD
[1] 'F'DW̄C'Form'
[2] 'F.MB'IWC'MenuBar'
[3] 'F.MB.FILE'DWC'Menu' '\&File'
[4]
[5] OLD<-CCS'F.MB.FILE'
[6] 'NEW'DWC'MenuItem' '\&New'
[7] 'OPEN'DWC'MenuItem' '\&Open'
[8] DCS OLD
[9]
[10] 'F.MB.EDIT'DWC'Menu' '\&Edit'
[11]
[12] OLD<-CCS'F.MB.EDIT'
[13] 'UNDO'DWC'MenuItem' '\&Undo'
[14] 'REDO'पWC'MenuItem' '\&Redo'
[15] DCS OLD
[16]
\nabla

```

\section*{Example}

Suppose a form F1 contains buttons B1 and B2．Each button maintains a count of the number of times it has been pressed，and the form maintains a count of the total number of button presses．The single callback function PRESS and its subfunction FMT can reside in the form itself
）CS F1
\＃．F1
ค Note that both instances reference
A the same callback function
＇B1＇DWS＇Event＇＇Select＇＇PRESS＇
＇B2＇IWS＇Event＇＇Select＇＇PRESS＇
A Initialise total and instance counts． TOTAL \(\leftarrow\) B1．COUNT \(\leftarrow\) B2．COUNT \(\leftarrow 0\)
\(\nabla\) PRESS MSG
［1］＇FMT＇＇TOTAL＇DCSכMSG ค Switch to instance space ［2］（TOTAL COUNT）＋ャ1 ค Incr total \＆instance count ［3］［WS＇Caption＇（COUNT FMT TOTAL）a Set instance caption \(\nabla\)
\(\nabla\) CAPT\＆INST FMT TOTL \(\quad\) a Format button caption．
［1］CAPTヶ（ゅINST），＇／＇，कTOTL ค E．g．40／100．
\(\nabla\)

\section*{Example}

This example uses \(\square C S\) to explore a namespace tree and display the structure. Note that it must export its own name (tree) each time it changes space, because the name tree is global.
```

[1] tabs,space
[2] 'tree'पCS space
[3] }\quad->(\rhosubs\leftarrow\downarrow\squareNL 9)\downarrow
[4] (tabs,'. ')otree"subs
\nabla
)ns x.y
\#.x.y
)ns z
\#.z
''tree '\#'

. x
. . y
. z

```

\section*{Comparison Tolerance:}

The value of \(\square\) CT determines the precision with which two numbers are judged to be equal. Two numbers, \(X\) and \(Y\), are judged to be equal if:
\((\mid X-Y) \leq \square C T \times(\mid X) \Gamma \mid Y \quad\) where \(\leq\) is applied without tolerance.
—CT may be assigned any value in the range from 0 to \(16 *^{-} 8\). A value of 0 ensures exact comparison. The value in a clear workspace is \(1 \mathrm{E}^{-} 14\).
\(\square C T\) is an implicit argument of the monadic primitive functions Ceiling ( \(\Gamma\) ), Floor ( L ) and Unique ( \(\cup\) ), and of the dyadic functions Equal ( \(=\) ), Excluding ( \(\sim\) ), Find ( \(\underline{\epsilon}\) ), Greater (>), Greater or Equal ( \(\geq\) ), Index of ( \(\imath\) ), Intersection ( \(n\) ), Less (<), Less or Equal \((\leq)\), Match ( \(\equiv\) ), Membership ( \(\epsilon\) ), Not Match ( \(\neq\) ), Not Equal ( \(\neq\) ), Residue (I) and Union (U), as well as DFMT O-format.

\section*{Examples}
```

 DCT <1E-10
 1.00000000001 1.0000001 = 1
    ```
10
\(Y\) must be a simple character scalar or vector identifying a saved workspace. \(X\) is optional. If present, it must be a simple character scalar, vector or matrix. A scalar or vector is treated as a single row matrix. Each (implied) row of \(X\) is interpreted as an APL name.

Each (implied) row of \(X\) is taken to be the name of an active object in the workspace identified by \(Y\). If \(X\) is omitted, the names of all defined active objects in that workspace are implied (defined functions and operators, variables, labels and namespaces).

Each object named in \(X\) (or implied) is copied from the workspace identified by \(Y\) to become the active object referenced by that name in the active workspace if the object can be copied. A copied label is re-defined to be a variable of numeric type. If the name of the copied object has an active referent in the active workspace, the name is disassociated from its value and the copied object becomes the active referent to that name. In particular, a function in the state indicator which is disassociated may be executed whilst it remains in the state indicator, but it ceases to exist for other purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The object will be copied to the current namespace in the active workspace, losing its original parent and gaining a new one in the process. You may only copy a GUI object into a namespace that is a suitable parent for that object. For example, you could only copy a Group object from a saved workspace if the current namespace in the active workspace is itself a Form, SubForm or Group.

See "Copy Workspace: " on page 662 for further information and, in particular, the manner in which dependant objects are copied.

A DOMAIN ERROR is reported in any of the following cases:
- Y is ill-formed, or is not the name of a workspace with access authorised for the active user account.
- Any name in X is ill-formed.
- An object named in \(X\) does not exist as an active object in workspace named in Y .

An object being copied has the same name as an active label.
When copying data between Classic and Unicode Editions, DCY will fail and a TRANSLATION ERROR will be reported if any object in workspace \(Y\) fails conversion between Unicode and \(\square A V\) indices, whether or not that object is specified by X. See "Atomic Vector - Unicode: " on page 391 for further details.

A WS FULL is reported if the active workspace becomes full during the copying process.

\section*{Example}
```

 [VR'FOO'
 \(\nabla \mathrm{R} \leftarrow \mathrm{FOO}\)
 [1]
$R \leftarrow 10$
∇
'FOO' DCY 'BACKUP'
[VR'FOO'
$\nabla R+F O O X$
[1] $\quad R \leftarrow 10 \times X$
∇

```

System variables are copied if explicitly included in the left argument, but not if the left argument is omitted.

\section*{Example}
—LX
(2 3p'DLX X') DCY'WS/CRASH'
DLX
\(\rightarrow\) RESTART
A copied object may have the same name as an object being executed. If so, the name is disassociated from the existing object, but the existing object remains defined in the workspace until its execution is completed.

\section*{Example}
\#.FOO[1]*
[VR'FOO'
\(\nabla \mathrm{R}+\mathrm{FOO}\)
[1] \(\quad \mathrm{R} \leftarrow 10\)
\(\nabla\)
'FOO'DCY'WS/MYWORK'
FOO
123
) SI
\#.FOO[1]*
\(\rightarrow \square \mathrm{LC}\)
10

\section*{Digits:}

\section*{\(R+\square D\)}

This is a simple character vector of the digits from 0 to 9 .

\section*{Example}
-D
0123456789

\section*{Decimal Comparison Tolerance:}

The value of DCCT determines the precision with which two numbers are judged to be equal when the value of \(\square F R\) is 1287 . If \(\square F R\) is 645 , the system uses \(\square C T\).

UDCT may be assigned any value in the range from 0 to \(2.3283064365386962890625 \mathrm{E}^{-1} 10\). A value of 0 ensures exact comparison. The value in a clear workspace is \(1 \mathrm{E}^{-} 28\).

For further information, see "Comparison Tolerance: " on page 406.

\section*{Examples}

CDCT \(+1 E^{-10}\)
\(1.000000000011 .0000001=1\)
10

\section*{Display Form:}

\section*{R-ZDF Y}

CDF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a Class.
\(Y\) must be a simple character array that specifies the display form of a namespace. If defined, this array will be returned by the format functions and DFMT instead of the default for the object in question. This also applies to the string that is displayed when the name is referenced but not assigned (the default display).

The result \(R\) is the previous value of the Display Form which initially is \(\square N U L L\).
```

 'F'DWC'Form'
 कF
 \rhoक F
 DFMT F
 \rhoDFMT F
 F ^ default display uses क
    ```
\#.F
3
\#. F
13
\#.F
    F. \(\quad\) DF 'Pete''s Form'
        क F
Pete's Form
        \(\rho \Phi F\)
11
        DFMT F
Pete's Form
        pDFMT F
111

Notice that पDF will accept any character array, but DFMT always returns a matrix.
```

 F.पDF 2 2 5\rhoDA
 F
    ```
ABCDE
FGHIJ
KLMNO
PQRST
    \(\rho \phi F\)
225
```

 \rhoD-DFMT F
 ABCDE
FGHIJ
KLMNO
PQRST
5 5

```

Note that IDF defines the Display Form statically, rather than dynamically.
```

 'F'DWC'Form' 'This is the Caption'
 F
    ```
\#.F
    F.(DDF Caption) \(\rho\) set display form to current
caption
    F
This is the Caption
    F.Caption*'New Caption' \(\rho\) changing caption does not
                                    A change the display form
    F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a Class. For example:
```

:Class MyClass
\nabla Make arg
:Access Public
:Implements Constructor
ODF arg
\nabla
:EndClass ค MyClass
PD\&-DNEW MyClass 'Pete'
PD

```
Pete

It is possible to set the Display Form for the Root and for DSE ) CLEAR
clear ws
\#
DDF IWSID
\#
CLEAR WS
```

 ZSE
 DSE
ZSE.DDF 'Session'
ISE
Session

```

Note that [DF applies directly to the object in question and is not automatically applied in a hierarchical fashion.
```

 'X'Zns ''
 X

```
\#. X
    'Y'X.DNS ''
    X.Y
\#.X.Y
    X. DDF 'This is \(X^{\prime}\)
    X
This is \(X\)
    X.Y
\#. X.Y

\section*{Division Method:}

DDIV
The value of DDIV determines how division by zero is to be treated. If \(\mathrm{DDIV}=0\), division by 0 produces a DOMAIN ERROR except that the special case of \(0 \div 0\) returns 1.

If \(\mathrm{CDIV}=1\), division by 0 returns 0 .
पDIV may be assigned the value 0 or 1 . The value in a clear workspace is 0 .
DDIV is an implicit argument of the monadic function Reciprocal ( \(\div\) ) and the dyadic function Divide ( \(\div\) ).

\section*{Examples}
```

 DDIV <0
 102 % 2 0 1
 0.512
\div0 1
DOMAIN ERROR
\div0 1
^
CDIV < 1
\div0 2
0.5
0 1 0 2 \div004

```
\(Y\) must be a simple non-negative numeric scalar or one element vector. A pause of approximately Y seconds is caused.

The shy result \(R\) is an integer scalar value indicating the length of the pause in seconds.

The pause may be interrupted by a strong interrupt.

\section*{Diagnostic Message: \\ \(R+\square D M\)}

This niladic function returns the last reported APL error as a three-element vector, giving error message, line in error and position of caret pointer.

\section*{Example}
\(2 \div 0\)
DOMAIN ERROR
\(2 \div 0\)
\(\wedge\)
—DM
DOMAIN ERROR \(2 \div 0\) ^

\section*{Extended Diagnostic Message: R-पDMX}

CDMX is a system object that provides information about the last reported APL error. DDMX has thread scope, i.e. its value differs according to the thread from it is referenced. In a multi-threaded application therefore, each thread has its own value of पDMX.

ZDMX contains the following Properties (name class 2.6). Note that this list is likely to change. Your code should not assume that this list will remain unchanged. You should also not assume that the display form of DDMX will remain unchanged.
\begin{tabular}{|c|c|c|}
\hline Category & character vector & The category of the error \\
\hline DM & nested vector & Diagnostic message. This is the same as DDM, but thread safe \\
\hline EM & character vector & Event message; this is the same as DEM DEN \\
\hline EN & integer & Error number. This is the same as DEN, but thread safe \\
\hline ENX & integer & Sub-error number \\
\hline Helpurt & character vector & URL of a web page that will provide help for this error. Version 13.1 identifies and has a handler for URLs starting with http;, https:, mailto: and www. This list may be extended in future \\
\hline InternalLocation & \begin{tabular}{l}
nested \\
vector
\end{tabular} & Identifies the line of interpreter source code (file name and line number) which raised the error. This information may be useful to Dyalog support when investigating an issue \\
\hline Message & character vector & Further information about the error \\
\hline OSError & see below & If applicable, identifies the error generated by the Operating System \\
\hline Vendor & character vector & For system generated errors, Vendor will always contain the character vector 'Dyalog'. This value can be set using DSIGNAL \\
\hline
\end{tabular}

OSError is a 3-element vector whose items are as follows:
\begin{tabular}{|l|l|l|}
\hline 1 & integer & \begin{tabular}{l} 
This indicates how the operating system error was \\
retrieved. \\
\(0=\) by the C-library errno () function \\
\(1=\) by the Windows GetLastError () function
\end{tabular} \\
\hline 2 & integer & \begin{tabular}{l} 
Error code. The error number returned by the operating \\
system using errno () or GetLastError () as above
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
character \\
vector
\end{tabular} & \begin{tabular}{l} 
The description of the error returned by the operating \\
system
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
\[
1 \div 0
\]

DOMAIN ERROR
\(1 \div 0\)
\(\wedge\)
पDMX
EM DOMAIN ERROR
Message Divide by zero
HelpURL http://help.dyalog.com/dmx/13.1/General/1
```

CDMX.Internallocation
arith_su.c 554

```

\section*{Isolation of Handled Errors}

CDMX cannot be explicitly localised in the header of a function. However, for all trapped errors, the interpreter creates an environment which effectively makes the current instance of DDMX local to, and available only for the duration of, the trap-handling code.

With the exception of पTRAP with Cutback, DDMX is implicitly localised within:
- Any function which explicitly localises DTRAP
- The : Case[List] or :Else clause of a :Trap control structure.
- The right hand side of a D-function Error-Guard.
and is implicitly un-localised when:
- A function which has explicitly localised DTRAP terminates (even if the trap definition has been inherited from a function further up the stack).
- The : EndTrap of the current : Trap control structure is reached.
- A D-function Error-Guard exists.

During this time, if an error occurs then the localised पDMX is updated to reflect the values generated by the error.

The same is true for DTRAP with Cutback, with the exception that if the cutback trap event is triggered, the updated values for DDMX are preserved until the function that set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a standard operating procedure (such as a file utility which traps FILE NAME ERROR and creates missing files when required) will not pollute the environment with irrelevant error information.

\section*{Example}
```

[1]
[2] tie\&name DFCREATE O
[3] :Else
[4] IDMX
[5] tie+name DFTIE 0
[6] name DFERASE tie
[7] tie\&name DFCREATE 0
[8] :EndTrap
[9] DFUNTIE tie
\nabla

```
—DMX is cleared by ) RESET, .
```

)reset
p\FMT \DMX

```
00

The first time we run NewFile 'pete', the file doesn't exist and the DFCREATE in NewFile[2] succeeds.
```

NewFile 'pete'

```

If we run the function again, the DFCREATE in NewFile[2]generates an error which triggers the : El se clause of the :Trap. On entry to the : El se clause, the values in DDMX reflect the error generated by DFCREATE. The file is then tied, erased and recreated.
```

 EM FILE NAME ERROR
 Message File exists
 HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/9
 1

```

After exiting the : Trap control structure, the shadowed value of DDMX is discarded, revealing the orignal value that it shadowed.
```

 pDFMT \DMX
 0

```

\section*{Example}

The EraseFile function also uses a : Trap in order to ignore the situation when the file doesn't exist.
```

\nabla EraseFile name;tie
:Trap 22
[2] tie\leftarrowname DFTIE 0
[3] name DFERASE tie
[4] :Else
[5] DDMX
[6] :EndTrap
\nabla

```

The first time we run the function, it succeeds in tieing and then erasing the file.
EraseFile 'pete'

The second time, the DFTIE fails. On entry to the : El se clause, the values in CDMX reflect this error.
```

 Erasefile 'pete'
 EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/11

```

Once again, the local value of DDMX is discarded on exit from the : Trap, revealing the shadowed value as before.
```

\rhoDFMT \DMX

```

00

\section*{Example}

In this example only the error number (EN) propery of DDMX is displayed in order to simplify the output:
```

 \(\nabla\) foo n ; DTRAP
 [1] 'Start foo'DDMX.EN
[2] \quad TRAP↔(2 'E' ' $\left.\rightarrow e r r^{\prime}\right)(11$ ' C' ' \rightarrow err')
[3] goo n
[4] err:'End foo:'DDMX.EN
∇
∇ goo n ; QTRAP
[1] DTRAP<5 'E' 'דerr'

```

```

[3] err:'goo:'पDMX.EN
∇

```

In the first case a DOMAIN ERROR (11) is generated on goo[2]. This error is not included in the definition of पTRAP in goo, but rather the the Cutback DTRAP definition in foo. The error causes the stack to be cut back to foo, and then execution branches to foo[4]. Thus DDMX. EN in foo retains the value set when the error occurred in goo.
```

 foo 1
 Start foo 0
End foo: 11

```

In the second case a LENGTH ERROR (5) is raised on goo[2]. This error is included in the definition of पTRAP in goo so the value DDMX . \(^{2 N}\) while in goo is 5 , but when goo terminates and foo resumes execution the value of DDMX. EN localised in goo is lost.
foo 2
Start foo 0
goo: 5
End foo: 0

In the third case a SYNTAX ERROR (2) is raised on goo[2]. Since the DTRAP statement is handled within goo (although the applicable OTRAP is defined in foo), the value CDMX. EN while in goo is 2 , but when goo terminates and foo resumes execution the value of DDMX. EN localised in goo is lost.
```

 foo 3
 Start foo 0
goo: 2
End foo: 0

```

\section*{Dequeue Events:}

ZDQ awaits and processes events. \(Y\) specifies the GUI objects(s) for which events are to be processed. Objects are identified by their names, as character scalars/vectors, or by namespace references. These may be objects of type Root, Form, Locator, Filebox, MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Subobjects (children) of those named in \(Y\) are also included. However, any objects which exist, but are not named in \(Y\), are effectively disabled (do not respond to the user).

If \(Y\) is ' . ' , all objects currently owned and subsequently created by the current thread are included in the पDQ. Note that because the Root object is owned by thread 0 , events on Root are reported only to thread 0 .

If \(Y\) is empty it specifies the object associated with the current namespace and is only valid if the current space is one of the objects listed above.

Otherwise, \(Y\) contains the name(s) of or reference(s) to the objects for which events are to be processed. Effectively, this is the list of objects with which the user may interact. A DOMAIN ERROR is reported if an element of \(Y\) refers to anything other than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an "action" which specifies how that event is to be processed by DDQ. The "action" may be a number with the value 0,1 or \({ }^{-1}\), or a character vector containing the name of a "callback function", or a character vector containing the name of a callback function coupled with an arbitrary array. Actions can be defined in a number of ways, but the following examples will illustrate the different cases.
```

OBJ DWS 'Event' 'Select' O
OBJ DWS 'Event' 'Select' 1
OBJ DWS 'Event' 'Select' 'FOO'
OBJ [WS 'Event' 'Select' 'FOO' 10
OBJ DWS 'Event' 'Select' 'FOO\&'

```

These are treated as follows:

\section*{Action \(=0\) (the default)}

DDQ performs "standard" processing appropriate to the object and type of event. For example, the standard processing for a KeyPress event in an Edit object is to action the key press, i.e. to echo the character on the screen.

\section*{Action \(=\mathbf{- 1}\)}

This disables the event. The "standard" processing appropriate to the object and type of event is not performed, or in some cases is reversed. For example, if the "action code" for a KeyPress event (22) is set to \({ }^{-1}\), DDQ simply ignores all keystrokes for \(^{2}\) the object in question.

\section*{Action \(=1\)}
-DQ terminates and returns information pertaining to the event (the event message in \(R\) as a nested vector whose first two elements are the name of the object (that generated the event) and the event code. R may contain additional elements depending upon the type of event that occurred.

\section*{Action \(=\mathrm{fn}\{\) larg \(\}\)}
f n is a character vector containing the name of a callback function. This function is automatically invoked by GDQ whenever the event occurs, and prior to the standard processing for the event. The callback is supplied the event message (see above) as its right argument, and, if specified, the array larg as its left argument. If the callback function fails to return a result, or returns the scalar value 1, पDQ then performs the standard processing appropriate to the object and type of event. If the callback function returns a scalar 0 , the standard processing is not performed or in some cases is reversed.

If the callback function returns its event message with some of the parameters changed, these changes are incorporated into the standard processing. An example would be the processing of a keystroke message where the callback function substitutes upper case for lower case characters. The exact nature of this processing is described in the reference section on each event type.

\section*{Action \(=\) ゅexpr}

If Action is set to a character vector whose first element is the execute symbol ( \(\Phi\) ) the remaining string will be executed automatically whenever the event occurs. The default processing for the event is performed first and may not be changed or inhibited in any way.

\section*{Action \(=\mathrm{fn} \&\{\operatorname{larg}\}\)}
f n is a character vector containing the name of a callback function. The function is executed in a new thread. The default processing for the event is performed first and may not be changed or inhibited in any way.
—DQ terminates in one of four instances. Note that its result is shy.
Firstly, \(\quad\) DQ terminates when an event occurs whose "action code" is 1 . In this case, its result is a nested vector containing the event message associated with the event. The structure of an event message varies according to the event type (see Object Reference). However, an event message has at least two elements of which the first is a character vector containing the name of the object, and the second is a numeric code specifying the event type.
—DQ also terminates if all of the objects named in \(Y\) have been deleted. In this case, the result is an empty character vector. Objects are deleted either using \(\square E X\), or on exit from a defined function or operator if the names are localised in the header, or on closing a form using the system menu.

Thirdly, DDQ terminates if the object named in its right argument is a special modal object, such as a MsgBox, FileBox or Locator, and the user has finished interacting with the object (e.g. by pressing an "OK" button). The return value of \(\mathrm{CDQ}^{2}\) in this case depends on the action code of the event.

Finally, \(\square D Q\) terminates with a VALUE ERROR if it attempts to execute a callback function that is undefined.

\section*{Data Representation (Monadic): R-ZDR Y}

Monadic CDR returns the type of its argument \(Y\). The result \(R\) is an integer scalar containing one of the following values. Note that the internal representation and data types for character data differ between the Unicode and Classic Editions.

Table 12: Unicode Edition
\begin{tabular}{|l|l|}
\hline Value & Data Type \\
\hline 11 & 1 bit Boolean \\
\hline 80 & 8 bits character \\
\hline 83 & 8 bits signed integer \\
\hline 160 & 16 bits character \\
\hline 163 & 16 bits signed integer \\
\hline 320 & 32 bits character \\
\hline 323 & 32 bits signed integer \\
\hline 326 & 32 bits Pointer \\
\hline 645 & 64 bits Floating \\
\hline 1287 & 128 bits Decimal \\
\hline
\end{tabular}

Table 13: Classic Edition
\begin{tabular}{|l|l|}
\hline Value & Data Type \\
\hline 11 & 1 bit Boolean \\
\hline 82 & 8 bits character \\
\hline 83 & 8 bits signed integer \\
\hline 163 & 16 bits signed integer \\
\hline 323 & 32 bits signed integer \\
\hline 326 & 32 bits Pointer \\
\hline 645 & 64 bits Floating \\
\hline 1287 & 128 bits Decimal \\
\hline
\end{tabular}

Note that types 80, 160 and \(\mathbf{3 2 0}\) and \(\mathbf{8 3}\) and \(\mathbf{1 6 3}\) and \(\mathbf{1 2 8 7}\) are exclusive to Dyalog APL.

\section*{Data Representation (Dyadic): R+X DDR Y}

Dyadic \(\quad\) DR converts the data type of its argument \(Y\) according to the type specification X. See "Data Representation (Monadic):" above for a list of data types but note that 1287 is not a permitted value in \(X\).

\section*{Case 1:}
\(X\) is a single integer value. The bits in the right argument are interpreted as elements of an array of type \(X\). The shape of the resulting new array will typically be changed along the last axis. For example, a character array seen as Boolean will have 8 times as many elements along the last axis.

\section*{Case 2:}
\(X\) is a 2-element integer value. The bits in the right argument are interpreted as type \(X[1]\). The system then attempts to convert the elements of the resulting array to type \(X[2]\) without loss of precision. The result \(R\) is a two element nested array comprised of:
1. The converted elements or a fill element ( 0 or blank) where the conversion failed
2. A Boolean array of the same shape indicating which elements were successfully converted.

\section*{Case 3: Classic Edition Only}
\(X\) is a 3-element integer value and \(X\left[\begin{array}{ll}2 & 3\end{array}\right]\) is 163 82. The bits in the right argument are interpreted as elements of an array of type \(X[1]\). The system then converts them to the character representation of the corresponding 16 bit integers. This case is provided primarily for compatibility with APL*PLUS. For new applications, the use of the [conv] field with पNAPPEND and GNREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by UNXLATE 0 . By default this is the mapping defined by the current output translate table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace compaction. For example, numeric arrays and (in the Unicode Edition) character arrays will, if possible, be squeezed to occupy the least possible amount of memory. However, the internal representation of the result \(R\) is guaranteed to remain unmodified until it is re-assigned (or partially re-assigned) with the result of any function.

DED invokes the Editor. \(Y\) is a simple character vector, a simple character matrix, or a vector of character vectors, containing the name(s) of objects to be edited. The optional left argument \(X\) is a character scalar or character vector with as many elements as there are names in \(Y\). Each element of \(X\) specifies the type of the corresponding (new) object named in \(Y\), where:
\begin{tabular}{|l|l|}
\hline\(\nabla\) & function/operator \\
\hline\(\rightarrow\) & simple character vector \\
\hline\(\epsilon\) & vector of character vectors \\
\hline- & character matrix \\
\hline\(\otimes\) & Namespace script \\
\hline\(\odot\) & Class script \\
\hline\(\odot\) & Interface \\
\hline
\end{tabular}

If an object named in \(Y\) already exists, the corresponding type specification in \(X\) is ignored.

If EDD is called from the Session, it opens Edit windows for the object(s) named in \(Y\) and returns a null result. The cursor is positioned in the first of the Edit windows opened by CED, but may be moved to the Session or to any other window which is currently open. The effect is almost identical to using )ED.

If CED is called from a defined function or operator, its behaviour is different. On asynchronous terminals, the Edit windows are automatically displayed in "fullscreen" mode (ZOOMED). In all implementations, the user is restricted to those windows named in Y. The user may not skip to the Session even though the Session may be visible

DED terminates and returns a result ONLY when the user explicitly closes all the windows for the named objects. In this case the result contains the names of any objects which have been changed, and has the same structure as Y .
\(Y\) must be a simple non-negative integer scalar or vector of event codes. If \(Y\) is a scalar, \(R\) is a simple character vector containing the associated event message. If \(Y\) is a vector, \(R\) is a vector of character vectors containing the corresponding event messages.

If Y refers to an undefined error code " n ", the event message returned is "ERROR NUMBER \(n\) ".

\section*{Example}

DEM 11
DOMAIN ERROR

\section*{Exception:}

\section*{R-DEXCEPTION}

This is a system object that identifies the most recent Exception thrown by a Microsoft .Net object.

DEXCEPTION derives from the Microsoft .Net class System.Exception. Among its properties are the following, all of which are strings:
\begin{tabular}{|l|l|}
\hline Source & \begin{tabular}{l} 
The name of the .Net namespace in which the exception was \\
generated
\end{tabular} \\
\hline StackTrace & The calling stack \\
\hline Message & The error message \\
\hline
\end{tabular}

ZUSING世'System'
DT<DateTime.New 10000000
EXCEPTION
DT<DateTime.New 10000000
DEN
90
DEXCEPTION.Message
Specified argument was out of the range of valid values.
Parameter name: Year, Month, and Day parameters describe an unrepresentable DateTime.

DEXCEPTION.Source
mscorlib
DEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month, Int32 day)
at System.DateTime..ctor(Int32 year, Int 32 month, Int 32 day)

\section*{Expunge Object: \\ \(\{R\}+\square E X Y\)}
\(Y\) must be a simple character scalar, vector or matrix, or a vector of character vectors containing a list of names. R is a simple Boolean vector with one element per name in Y.

Each name in \(Y\) is disassociated from its value if the active referent for the name is a defined function, operator, variable or namespace.

The value of an element of \(R\) is 1 if the corresponding name in \(Y\) is now available for use. This does not necessarily mean that the existing value was erased for that name. A value of 0 is returned for an ill-formed name or for a distinguished name in \(Y\). The result is suppressed if not used or assigned.

\section*{Examples}

Dex'Var'

1010
If a named object is being executed the existing value will continue to be used until its execution is completed. However, the name becomes available immediately for other use.

\section*{Examples}
\#.FOO[1]*
IVR'FOO'
\(\nabla R \leftarrow F O O\)
[1] \(\quad \mathrm{R}+10\)
\(\nabla\)
+ \({ }^{\prime}\) EX'FOO'
1
) SI
\#.FOO[1]*
จFOO[D]
defn error
FOO \(\leftarrow 23\)
\(\rightarrow \square \mathrm{LC}\)
10
FOO
123

If a named object is an external variable, the external array is disassociated from the name:
```

 OXT'F'
 FILES/COSTS
OEX'F' \diamond DXT'F'

```

If the named object is a GUI object, the object and all its children are deleted and removed from the screen. The expression \(\bar{E} X^{\prime}\). ' deletes all objects owned by the current thread except for the Root object itself. In addition, if this expression is executed by thread 0 , it resets all the properties of ' . ' to their default values. Furthermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.
If the named object is the last remaining external function of an auxiliary process, the AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

\section*{Export Object: \\ \(\{R\}+\{X\}\) EXPORT \(Y\)}

CEXPORT is used to set or query the export type of a defined function (or operator) referenced by the DPATH mechanism.
\(Y\) is a character matrix or vector-of-vectors representing the names of functions and operators whose export type is to be set or queried.
\(X\) is an integer scalar or vector (one per name in the namelist) indicating the export type. \(X\) can currently be one of the values:
- 0 - not exported.
- 1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.
The result \(R\) is a vector that reports the export type of the functions and operators named in Y . When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of namespaces in the DPATH system variable, it examines the function's export type:

This instance of the function is ignored and the search is resumed at the next namespace in the DPATH list. Type-0 is typically used for functions residing in a utility namespace which are not themselves utilities, for example the private sub-function of a utility function.
This instance of the function is executed in the namespace in which is was found and the search terminated. The effect is exactly as if the function had been referenced by its full path name.

Warning: The left domain of DEXPORT may be extended in future to include extra types \(2,3, \ldots\) (for example, to change the behaviour of the function). This means that, while DEXPORT returns a Boolean result in the first version, this may not be the case in the future. If you need a Boolean result, use \(0 \neq\) or an equivalent.
\[
\begin{aligned}
& \text { ( } 0=\square \square E X P O R T \text { nl } 34 \text { ) f } \mathrm{nl} 34 \text { a list of exported } \\
& \text { } \Omega \text { functions and ops. }
\end{aligned}
\]

\section*{File Append Component: \(\quad\{R\} \leftarrow X\) DFAPPEND \(Y\)}

\section*{Access code 8}
\(Y\) must be a simple integer scalar or a 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero. X may be any array including, for example, the DOR of a namespace.

The shy result \(R\) is the number of the component to which \(X\) is written, and is 1 greater than the previously highest component number in the file, or 1 if the file is new.

\section*{Examples}
(1000?1000) DFAPPEND 1
\(\square \leftarrow(23 \rho \imath 6)\) 'Geoff' ( \(\quad\) (OR'FOO') DFAPPEND 1
12
\(\square \leftarrow A\) B C Dfappend"1
131415
```

Dump < {
tie\leftarrow\alpha DFCREATE O \& create file.
(DFUNTIE tie){}\omega DFAPPEND tie }\Omega\mathrm{ append and untie.
}

```

\section*{File System Available:}

\section*{R+DFAVAIL}

This niladic function returns the scalar value 1 unless the component file system is unavailable for some reason, in which case it returns scalar 0. If DFAVAIL does return 0 , most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE
See User Guide for further details.

\section*{File Check and Repair: \(R+\{X\}\) DFCHK \(Y\)}

DFCHK validates and repairs component files, and validates files associated with external variables, following an abnormal termination of the APL process or operating system.

Y must be a simple character scalar or vector which specifies the name of the file to be exclusively checked or repaired. For component files, the file must be named in accordance with the operating system's conventions, and may be a relative or absolute pathname. The file must exist and must not be tied. For files associated with external variables, any filename extension must be specified even if DXT would not require it. See User Guide for file naming conventions under Windows and UNIX. The file must exist and must not be associated with an external variable.

The optional left-argument \(X\) must be a vector of zero or more character vectors from among 'force', 'repair' and 'rebuild', which determine the detailed operation of the function. Note that these options are case-sensitive.
- If \(X\) contains 'force' \(\quad\) FCHK will validate the file even if it appears to have been cleanly untied.
- If \(X\) contains 'repair' DFCHK will repair the file, following validation, if it appears to be damaged. This option may be used in conjunction with 'force'.
- If \(X\) contains 'rebuild' DFCHK will repair the file unconditionally.

If \(X\) is omitted, the default behaviour is as follows:
1. If the file appears to have been cleanly untied previously, return \(\theta\), i.e. report that the file is OK.
2. Otherwise, validate the file and return the appropriate result. If the file is corrupt, no attempt is made to repair it.

The result \(R\) is a vector of the numbers of missing or damaged components. \(R\) may include non-positive numbers of "pseudo components" that indicate damage to parts of the file other than in specific components:
\begin{tabular}{|l|l|}
\hline 0 & ACCESS MATRIX. \\
\hline-1 & Free-block tree. \\
\hline-2 & Component index tree. \\
\hline
\end{tabular}

Other negative numbers represent damage to the file metadata; this set may be extended in the future.

Following a check of the file, a non-null result indicates that the file is damaged.
Following a repair of the file, the result indicates those components that could not be recovered. Un-recovered components will give a FILE COMPONENT DAMAGED error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those components that were written with the checksum option enabled (see "File Properties: " on page 452).

Following an operating system crash, repair may result in one or more individual components being rolled back to a previous version or not recovered at all, unless Journaling levels 2 or 3 were also set when these components were written.

File Copy: \(R \leftarrow X\) DFCOPY \(Y\)

\section*{Access Code: 4609}
\(Y\) must be a simple integer scalar or 1 or 2-element vector containing the file tie number and optional passnumber. The file need not be tied exclusively.
\(X\) is a character vector containing the name of a new file to be copied to.
DFCOPY creates a copy of the tied file specified by \(Y\), named \(X\). The new file \(X\) will be a 64-bit file, but will otherwise be identical to the original file. In particular all component level information, including the user number and update time, will be the same. The operating system file creation, modification and access times will be set to the time at which the copy occurred.

The result \(R\) is the file tie number associated with the new file \(X\).
Note that the Access Code is 4609 , which is the sum of the Access Codes for —FREAD (1), DFRDCI (512) and DFRDAC (4096).

\section*{Example}
```

told*'oldfile32'DFTIE 0
'S' DFPROPS told
tnew*'newfile64' DFCOPY told
'S' DFPROPS tnew

```
32
64

If \(X\) specifies the name of an existing file, the operation fails with a F ILE NAME ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as disk full) or if a strong interrupt is issued, the copy will be aborted and the new file \(X\) will not be created.

\section*{File Create: \\ \(\{R\}-X\) DFCREATE \(Y\)}

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.
The address size is an integer and may be either 32 or 64 . A value of 32 causes the internal component addresses to be represented by 32 -bit values which allow a maximum file size of 4 GB . A value of 64 (the default) causes the internal component addresses to be represented by 64 -bit values which allows file sizes up to operating system limits. Note that 32 -bit component files will. See below.

Note:
- a 32-bit component file may not contain Unicode character data.
- a 64-bit component file may not be accessed by versions of Dyalog APL prior to Version 10.1.0
\(X\) must be either
a. a simple character scalar or vector which specifies the name of the file to be created. See User Guide for file naming conventions under UNIX and Windows.
b. a vector of length 1 or 2 whose items are:
i. a simple character scalar or vector as above.
ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.
The shy result of DFCREATE is the tie number of the new file.

\section*{Automatic Tie Number Allocation}

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an explicit result, the first (closest to zero) available tie number. This allows you to simplify code. For example:
from:
\[
\begin{array}{ll}
\text { tie } \leftarrow 1+\lceil/ 0, \text { DFNUMS } & \text { a With next available number, } \\
\text { file DFCREATE tie } & \text { a } . . \text { create file. }
\end{array}
\]
to:
```

tie\leftarrowfile CFCREATE O \& Create with first available..

```

\section*{Examples}


\section*{Important Note}

\section*{Dyalog intends to withdraw support for 32-bit component files in future releases.}

If you have any existing 32-bit component files, or applications which create and/or use them, Dyalog recommends that you prepare for this in the following ways:
- Ensure that Dyalog is not started with the command-line option -F32. This option sets the default component file type which is created to 32-bit.
- Ensure that no DFCREATE within your applications explicitly specifies that 32-bit files are to be created.
- Make plans to convert any existing 32-bit component files to 64 -bit using DFCOPY. DFCOPY will create a 64 -bit copy even if the file being copied is 32-bit.

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog will continue to provide a means to convert 32-bit files to supported formats for a minimum of 10 years after direct support is withdrawn.

\section*{File Drop Component: \\ \(\{R\}+\) ZFDROP \(Y\)}

\section*{Access code 32}
\(Y\) must be a simple integer vector of length 2 or 3 whose elements are:
\begin{tabular}{|c|l|}
\hline\([1]\) & a file tie number \\
\hline\([2]\) & \begin{tabular}{l} 
a number specifying the position and number of components to be \\
dropped. A positive value indicates that components are to be \\
removed from the beginning of the file; a negative value indicates that \\
components are to be removed from the end of the file
\end{tabular} \\
\hline\([3]\) & an optional passnumber which if omitted is assumed to be zero \\
\hline
\end{tabular}

The shy result of a \(\square F D R O P\) is a vector of the numbers of the dropped components. This is analogous to DFAPPEND in that the result is potentially useful for updating some sort of dictionary:
```

cnos,*vec \FAPPEND`tie \rho Append index to dictionary
cnos~<-\squareFDROP tie,-\rhovec \rho Remove index from dict.

```

Note that the result vector, though potentially large, is generated only on request.

\section*{Examples}

DFSIZE 1
12154364294967295
DFDROP \(13 \diamond\) DFSIZE 1
42154364294967295
DFDROP 1 -2 \(\diamond\) DFSIZE 1
41954364294967295

\section*{File Erase: \\ \(\{R\}+X\) DFERASE \(Y\)}

\section*{Access code 4}
\(Y\) must be a simple integer scalar or 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero. \(X\) must be a character scalar or vector containing the name of the file associated with the tie number \(Y\). This name must be identical with the name used to tie the file, and the file must be exclusively tied. The file named in X is erased and untied. See User Guide for file naming conventions under UNIX and Windows.

The shy result of DFERASE is the tie number of the erased file.

\section*{Examples}
'SALES'Dferase 'SaLes' Dftie 0
'./temp' DfCREATE 1
'temp' DfERASE 1
FILE NAME ERROR
'temp'DfERASE 1

\section*{File History:}

\section*{R+DFHIST Y}

\section*{Access code 16384}
\(Y\) must be a simple integer vector of length 1 or 2 containing the file tie number and an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a numeric matrix with shape (5 2) whose rows represent the most recent occurrence of the following events.
1. File creation (see note)
2. (Undefined)
3. Last update of the access matrix
4. Last tie (See User Guide: APL_FHIST_TIE parameter)
5. Last update performed by पFAPPEND, \(\bar{\square} F C R E A T E, ~ प F D R O P\) or Dfreplace

For each event, the first column contain the user number and the second a timestamp. Like the timestamp reported by पFRDCI this is measured in \(60^{\text {th }}\) s of a second since 1st January 1970 (UTC).

Currently, the second row of the result (undefined) contains (00).

Note: DFHIST collects information only if journaling and/or checksum is in operation. If neither is in use, the collection of data for DF HIST is disabled and its result is entirely 0 . If a file has both journaling and checksum disabled, and then either is enabled, the collection of data for DFHIST is enabled too. In this case, the information in row 1 of DFHIST relates to the most recent enabling DFPROPS operation rather than the original DFCREATE.

In the examples that follow, the FH ist function is used below to format the result of DFHIST.
```

 \nabla r<FHist tn;cols;rows;fhist;fmt;ToTS;I2D
 [1] rows*'Created' 'Undefined' 'Last DFSTAC'
[2] rows,↔'Last Tied' 'Last Updated'
[3] cols*'User' 'TimeStamp'
[4] fmt\leftarrow'ZI4,2(c-o,ZI2),c د,ZI2,2(c:o,ZI2)'|
[5] I2D<{+2 DNQ'.' 'IDNToDate'\omega}
[6] ToTS\&{d t<1 1 0 0 0c\$LO... }246060060T
[7] \downarrowfmt DFMT(0-1\downarrow\uparrowI2D`25568+,d),0 - 1\downarrowt}
[8] fhist<पFHIST tn
[9] fhist[;2]<ToTS fhist[;2]
[10] fhist[;1]*क*fhist[;1]
[11] r+((c''),rows),cols;fhist
\nabla

```

\section*{Examples}


Dfuntie 1
'c: \temp'DFCREATE \(1 \diamond\) FHist 1 User TimeStamp
Created 0 2012-01-14 12:29:53
Undefined 0 1970-01-01 00:00:00
Last DFSTAC 0 2012-01-14 12:29:53
Last Tied 0 2012-01-14 12:29:57
Last Updated 0 2012-01-14 12:29:55

\section*{Access code 2048}

This function holds component file(s) and/or external variable(s).
If applied to component files, then \(Y\) is an integer scalar, vector, or one-row matrix of file tie numbers, or a two-row matrix whose first row contains file tie numbers and whose second row contains passnumbers.

If applied to external variables, then \(Y\) is a non-simple scalar or vector of character vectors, each of which is the name of an external variable. (NOT the file names associated with those variables).

If applied to component files and external variables, Y is a vector whose elements are either integer scalars representing tie numbers, or character vectors containing names of external variables.

The effect is as follows:
1. The user's preceding holds (if any) are released.
2. Execution is suspended until the designated files are free of holds by any other task.
3. When all the designated files are free, execution proceeds. Until the hold is released, other tasks using DF HOLD on any of the designated files will wait.

If Y is empty, the user's preceding hold (if any) is released, and execution continues.
A hold is released by any of the following:
- Another DF HOLD
- Untying or retying all the designated files. If some but not all are untied or retied, they become free for another task but the hold persists for those that remain tied.
- Termination of APL.
- Any untrapped error or interrupt.
- A return to immediate execution.

Note that a hold is not released by a request for input through \(\square\) or \(\square\).
Note also that point 5 above implies that DF HOLD is generally useful only when called from a defined function, as holds set in immediate execution (desk calculator) mode are released immediately.

The shy result of DF HOLD is a vector of tie numbers of the files held.

\section*{Examples:}
\[
\begin{aligned}
& \text { DFHOLD } 1 \\
& \text { DFHOLD } \theta \\
& \text { DFHOLD } c^{\prime} X T V A R ' \\
& \text { DFHOLD } 12,[0.5] 016385 \\
& \text { DFHOLD } 1 \text { 'XTVAR' }
\end{aligned}
\]

\section*{Fix Script:}

\section*{\(\{R\}+\{X\} \square F I X \quad Y\)}

DFIX fixes a Class from the script specified by Y .
Y must be a vector of character vectors or character scalars that contains a wellformed Class script. If so, the shy result \(R\) is a reference to the new Class fixed by DFIX.

The Class specified by Y may be named or unnamed.
If specified, \(X\) must be a numeric scalar. If \(X\) is omitted or non-zero, and the Class script \(Y\) specifies a name (for the Class), DF IX establishes that Class in the workspace.

If X is 0 or the Class specified by Y is unnamed, the Class is not established per se, although it will exist for as long as a reference to it exists.

In the first example, the Class specified by Y is named (MyClass) but the result of पF IX is discarded. The end-result is that MyCl ass is established in the workspace as a Class.
\(\square+\square f I X \quad\) ':Class MyClass' ':EndClass'
\#.MyClass
In the second example, the Class specified by Y is named ( MyCl ass) and the result of DF IX is assigned to a different name (MYREF). The end-result is that a Class named MyClass is established in the workspace, and MYREF is a reference to it.

MYREF \(-\square F I X ~ ': C l a s s ~ M y C l a s s ' ~ ': E n d C l a s s ' ~\)
) CLASSES
MyClass MYREF
DNC'MyClass' 'MYREF'
9.49 .4

MYREF
\#.MyClass

In the third example, the left-argument of 0 causes the named Class MyCl ass to be visible only via the reference to it (MYREF). It is there, but hidden.

MYREF \(<0\) DFIX ':Class MyClass' ':EndClass' ) CLASSES
MYREF
MYREF
\#. MyClass
The final example illustrates the use of un-named Classes.
```

src*':Class' '\nablaMake n'
src,*'Access Public' 'Implements Constructor'
src,ゃ'पDF n' '\nabla' ':EndClass'
MYREF-DFIX src
)CLASSES
MYINST-DNEW MYREF'Pete'
MYINST

```

MYREF
Pete

\section*{Component File Library:}

\section*{\(R * \square F L I B \quad Y\)}

Y must be a simple character scalar or vector which specifies the name of the directory whose APL component files are to be listed. If Y is empty, the current working directory is assumed.

The result \(R\) is a character matrix containing the names of the component files in the directory with one row per file. The number of columns is given by the longest file name. Each file name is prefixed by \(Y\) followed by a directory delimiter character. The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in question, the result is an empty character matrix with 0 rows and 0 columns.

Note that if a file is exclusively tied (as opposed to share tied) then it is not reported by DFLIB.

\section*{Examples}

DFLIB ''
SALESFILE COSTS
```

 OFLIB '.'
 ./SALESFILE
./COSTS

```

DFLIB '../budget'
. ./budget/SALES. 85
../budget/COSTS. 85

\section*{Format (Monadic):}

\section*{R-पFMT Y}
\(Y\) may be any array. \(R\) is a simple character matrix which appears the same as the default display of \(Y\). If \(Y\) contains control characters from \(\square T C\), they will be resolved.

\section*{Examples}
\[
\text { A*DFMT 'n' , } \mathrm{DTC}[1], ' \circ \text { ' }
\]
\[
\rho A
\]

11
A
ค
A - DVR 'FOO'
A
\(\nabla R \leftarrow F O O\)
[1] \(R \leftarrow 10\)
\(\nabla\)
\(\rho A\)
31
\(B-\square\) FMT A
B
\(\nabla R \leftarrow F O O\)
[1] \(\quad \mathrm{R} \leftarrow 10\)
\(\nabla\)
\(\rho B\)
312

\section*{Format (Dyadic): \\ R-X DFMT Y}
\(Y\) must be a simple array of rank not exceeding two, or a non-simple scalar or vector whose items are simple arrays of rank not exceeding two. The simple arrays in \(Y\) must be homogeneous, either character or numeric. All numeric values in \(Y\) must be simple; if \(Y\) contains any complex numbers, dyadic DFMT will generate a DOMAIN ERROR. \(X\) must be a simple character vector. \(R\) is a simple character matrix.
\(X\) is a format specification that defines how columns of the simple arrays in \(Y\) are to appear. A simple scalar in \(Y\) is treated as a one-element matrix. A simple vector in \(Y\) is treated as a one-column matrix. Each column of the simple arrays in \(Y\) is formatted in left-to-right order according to the format specification in \(X\) taken in left-to-right order and used cyclically if necessary.
\(R\) has the same number of rows as the longest column (or implied column) in \(Y\), and the number of columns is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases separated by a single comma, selected from the following:
\begin{tabular}{|l|l|}
\hline rAw & Alphanumeric format \\
\hline rEw.s & Scaled format \\
\hline rqFw.d & Decimal format \\
\hline rqGDpattern】 & Pattern \\
\hline rqIw & Integer format \\
\hline Tn & Absolute tabulation \\
\hline Xn & Relative tabulation \\
\hline DtD & Text insertion \\
\hline
\end{tabular}
(Alternative surrounding pairs for Pattern or Text insertion are < >, c,\(\square \square\) or * ".)
where:
\(r\)
q
w

S
\(d\)
\(n\)
t
pattern
is an optional repetition factor indicating that the format phrase is to be applied to \(r\) columns of \(Y\)
is an optional usage of qualifiers or affixtures from those described below.
is an integer value specifying the total field width per column of \(Y\), including any affixtures.
is an integer value specifying the number of significant digits in Scaled format; s must be less than w-1
is an integer value specifying the number of places of decimal in Decimal format; \(d\) must be less than \(w\).
is an integer value specifying a tab position relative to the notional left margin (for \(T\)-format) or relative to the last formatted position (for X -format) at which to begin the next format.
is any arbitrary text excluding the surrounding character pair. Double quotes imply a single quote in the result.

\section*{Qualifiers q are as follows:}

B leaves the field blank if the result would otherwise be zero.
C inserts commas between triads of digits starting from the rightmost digit of the integer part of the result.
scales numeric values by 1 Em where m is an integer, negation may be indicated by \({ }^{-}\)or - preceding the number.
\(\mathrm{L} \quad\) left justifies the result in the field width.
OvDt replaces specific numeric value v with the text t .
substitutes standard characters. \(p\) is a string of pairs of symbols enclosed between any of the Text Insertion delimiters. The first of each pair is the standard symbol and the second is the symbol to be substituted. Standard symbols are:
SDpl * overflow fill character
. decimal point
, triad separator for \(C\) qualifier
0 fill character for \(Z\) qualifier
_ loss of precision character
fills unused leading positions in the result with zeros (and commas if C is also specified).
9 digit selector

\section*{Affixtures are as follows:}
\begin{tabular}{ll} 
MDtD & \begin{tabular}{l} 
prefixes negative results with the text \(t\) instead of the negative \\
sign.
\end{tabular} \\
post-fixes negative results with the text \(t\)
\end{tabular}

The surrounding affixture delimiters may be replaced by the alternative pairs described for Text Insertion.

\section*{Examples}

A vector is treated as a column:
```

 'I5' DFMT 10 20 30
    ```
10
20
30

The format specification is used cyclically to format the columns of the right argument:
```

 'I3,F5.2' DFMT 2 4\rhoz8
 12.00 3 4.00
5 6.00 7 8.00

```

The columns of the separate arrays in the items of a non-simple right argument are formatted in order. Rows in a formatted column beyond the length of the column are left blank:
\begin{tabular}{|c|c|c|}
\hline & '2I4, F7.1' & DFMT (24)(2 \(2 \mathrm{p} 0.1 \times 24\) ) \\
\hline 1 & 00.2 & \\
\hline 1 & \(0 \quad 0.4\) & \\
\hline 3 & & \\
\hline 4 & & \\
\hline
\end{tabular}

Characters are right justified within the specified field width, unless the \(L\) qualifier is specified:
```

 'A2' DFMT 1 6p'SPACED'
 S P A C E D

```

If the result is too wide to fit within the specified width, the field is filled with asterisks:
\begin{tabular}{l}
0.50 \\
\(* * * * *\) \\
\(* * * * *\)
\end{tabular}

Relative tabulation (X-format) identifies the starting position for the next format phrase relative to the finishing position for the previous format, or the notional left margin if none. Negative values are permitted providing that the starting position is not brought back beyond the left margin. Blanks are inserted in the result, if necessary:
```

 'I2,X3,3A1' DFMT (r3)(2 3p'TOPCAT')
 1 TOP
2 CAT
3

```

Absolute tabulation (T-format) specifies the starting position for the next format relative to the notional left margin. If position 0 is specified, the next format starts at the next free position as viewed so far. Blanks are inserted into the result as required. Over-written columns in the result contain the most recently formatted array columns taken in left-to-right order:
```

 X*'6I1,T5,A1,T1,3A1,T7,F5.1'
 X CFMT (1 6\rhor6)('*')(1 3p'ABC')(22.2)
 ABC4*6 22.2

```

If the number of specified significant digits exceeds the internal precision, low order digits are replaced by the symbol _:
'F20.1' DFMT 1E18 \(\div 3\) 3333333333333333__.

The Text Insertion format phrase inserts the given text repeatedly in all rows of the result:

MEN \(\leftarrow 3\) 5 \({ }^{\prime}\) 'FRED BILL JAMES'
WOMEN -2 5p'MARY JUNE '
'5A1, <|>' DFMT MEN WOMEN
FRED |MARY
BILL |JUNE
JAMES \(\mid\)

The last example also illustrates that a Text Insertion phrase is used even though the data is exhausted. The following example illustrates effects of the various qualifiers:
\[
\begin{aligned}
& \text { X ' 'F5.1, BF6.1, X1, ZF5.1, X1,LF5.1,K3CS<., ,. >F 10.1' } \\
& \text { X DFMT \$5 3p-1.5 } 025 \\
& -1.5-1.5-01.5-1.5 \quad-1.500,0 \\
& 0.0 \quad 000.00 .0 \quad 0,0 \\
& 25.0 \quad 25.0 \quad 025.0 \quad 25.0 \quad 25.000,0
\end{aligned}
\]

Affixtures allow text to be included within a field. The field width is not extended by the inclusion of affixtures. \(N\) and \(Q\) affixtures shift the result to the left by the number of characters in the text specification. Affixtures may be used to enclose negative results in parentheses in accordance with common accounting practice:
```

 'M<(>N<)>Q< >F9.2' DFMT 150.3 -50.25 0 1114.9
 150.30
(50.25)
0.00
1114.90

```

One or more format phrases may be surrounded by parentheses and preceded by an optional repetition factor. The format phrases within parentheses will be re-used the given number of times before the next format phrase is used. A Text Insertion phrase will not be re-used if the last data format phrase is preceded by a closing parenthesis:
```

 'I2,2(</>,ZI2)' DFMT 1 3\rho\phi100|3^\TS
 20/07/89

```

\section*{G Format}

Only the \(\mathrm{B}, \mathrm{K}, \mathrm{S}\) and O qualifiers are valid with the G option
Ipat tern】 is an arbitrary string of characters, excluding the delimiter characters. Characters ' 9 ' and ' \(Z\) ' (unless altered with the \(S\) qualifier) are special and are known as digit selectors.

The result of a G format will have length equal to the length of the pattern.
The data is rounded to the nearest integer (after possible scaling). Each digit of the rounded data replaces one digit selector in the result. If there are fewer data digits than digit selectors, the data digits are padded with leading zeros. If there are more data digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data digit is copied if and only if digits appear on either side of it. Otherwise a blank appears. Similarly text between digit selectors appears only if digits appear on either side of the text. Text appearing before the first digit selector or after the last will always appear in the result.

\section*{Examples}
'Gc99/99/99''ロFMT \(0 \quad 10010018 \quad 789\)
08/07/89
'GcZZ/ZZ/ZZつ'DFMT 80789 + 01
8/07/89
8/07/9
'GcAndy ZZ Pauline ZZכ' CFMT 2721.4992699 .5
Andy 27 Pauline 21
Andy 27
مD*'K2GcDM Z.ZZZ.ZZ9,99د' DFMT 1234567.89 1234.56
DM 1.234.567,89
DM 1.234,56
215
An error will be reported if:
- Numeric data is matched against an A control phrase.
- Character data is matched against other than an A control phrase.
- The format specification is ill-formed.
- For an F control phrase, \(d>w-2\)
- For an E control phrase, \(s>w-2\)

\section*{0 Format Qualifier}

The O format qualifier replaces a specific numeric value with a text string and may be used in conjunction with the E, F, I and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value which is to be substituted (if omitted, the default is 0 ) and then the text string within pairs of symbols such as "<>". For example:

O - qualifier Description
\(0<n i l>\quad\) Replaces the value 0 with the text "nil"
\(042<N / A>\quad R e p l a c e s ~ t h e ~ v a l u e ~ 42 ~ w i t h ~ t h e ~ t e x t ~ " N / A " ~\)
\(00.001<1 / 1000>\) Replaces the value 0.001 with the text " \(1 / 1000\) "

The replacement text is inserted into the field in place of the numeric value. The text is normally right-aligned in the field, but will be left-aligned if the L qualifier is also specified.

It is permitted to specify more than one O-qualifier within a single phrase.
The O-qualifier is DCT sensitive.
```

Examples
'O<NIL>F7.2'口FMT 12.3 0 42.5
12.30
NIL
42.50
'O<NIL>LF7.2'口FMT 12.3 0 42.5
12.30
NIL
42.50
'O<NIL>O42<N/A>I6'DFMT 12 0 42 13
12
NIL
N/A
1 3
'O99<replace>F20.2'Dfmt 99 100 101
replace
100.00
101.00

```

\section*{File Names:}

\section*{R-DFNAMES}

The result is a character matrix containing the names of all tied files, with one file name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the result are in the order in which the files were tied.
```

Examples
'/usr/pete/SALESFILE' DFSTIE 16
'../budget/COSTFILE' DFSTIE 2
'PROFIT' DFCREATE 5
DFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT
pDFNAMES
3 19
GFNUMS,DFNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 \mp@code { P R O F I T }

```

File Numbers:

\section*{R-DFNUMS}

The result is an integer vector of the tie numbers of all tied files. If no files are tied, the result is empty. The elements of the result are in the order in which the files were tied.

\section*{Examples}
'/usr/pete/SALESFILE' DFSTIE 16
'../budget/COSTFILE' DFSTIE 2
'PROFIT' DfCREATE 5
Dfnums
1625
Dfnums, Dfnames
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT
Dfuntie Dfnums
pDFNUMS

\section*{File Properties: \\ R+X DFPROPS Y}

\section*{Access Code 1 (to read) or 8192 (to change properties)}

DFPROPS reports and sets the properties of a component file.
Y must be a simple integer scalar or a 1 or 2-element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted, it is assumed to be 0 .
\(X\) must be a simple character scalar or vector containing one or more valid Identifiers listed in the table below, or a 2-element nested vector which specifies an Identifier and \(a\) (new) value for that property. To set new values for more than one property, \(X\) must be is a vector of 2 -element vectors, each of which contains an Identifier and a (new) value for that property.

If the left argument is a simple character array, the result \(R\) contains the current values for the properties identified by \(X\). If the left argument is nested, the result \(R\) contains the previous values for the properties identified by \(X\).
\begin{tabular}{|l|l|l|}
\hline Identifier & Property & Description / Legal Values \\
\hline S & \begin{tabular}{l} 
File Size \\
(read \\
only \()\)
\end{tabular} & \begin{tabular}{l}
\(32=\) Small Component Files (<4Gb) \\
\(64=\) Large Component Files
\end{tabular} \\
\hline E & \begin{tabular}{l} 
Endian- \\
ness \\
(read \\
only \()\)
\end{tabular} & \begin{tabular}{l}
\(0=\) Little-endian \\
\(1=\) Big-endian
\end{tabular} \\
\hline U & Unicode & \begin{tabular}{l}
\(0=\) Characters must be written as type 82 arrays \\
\(1=\) Characters must be written as Unicode arrays
\end{tabular} \\
\hline J & \begin{tabular}{l}
\(0=\) Disable Journaling \\
\(1=\) Enable APL crash proof Journaling \\
\(2=\) Enable System crash proof Journaling; repair \\
needed on recovery \\
\(3=\) Enable full System crash proof Journaling
\end{tabular} \\
\hline C & Checksum & \begin{tabular}{l}
\(0=\) Disable checksum \\
\(1=\) Enable checksum
\end{tabular} \\
\hline
\end{tabular}

The default properties for a newly created file are as follows:
- \(\mathrm{S}=64\)
- \(\mathrm{U}=1\) (Unicode Edition and 64-bit file) or 0 (otherwise)
- \(\mathrm{J}=1\)
- \(\mathrm{C}=1\)
- E depends upon the computer architecture.

\section*{Journaling Levels}

Level 1 journaling (APL crash-proof) automatically protects a component file from damage in the event of abnormal termination of the APL process. The file state will be implicitly committed between updates and an incomplete update will automatically be rolled forward or back when the file is re-tied. In the event of an operating system crash the file may be more seriously damaged. If checksum was also enabled it may be repaired using DF CHK but some components may be restored to a previous state or not restored at all.

Level 2 journaling (system crash-proof-repair needed on recovery) extends level 1 by ensuring that a component file is fully repairable using DFCHK with no component loss in the event of an operating system failure. If an update was in progress when the system crashed the affected component will be rolled back to the previous state. Tying and modifying such a file without first running DFCHK may however render it un-repairable.

Level 3 journaling (system crash-proof) extends level 1 further by protecting a component file from damage in the event of abnormal termination of the APL process and also the operating system. Rollback of an incomplete update will be automatic and no explicit repair will be needed.

Enabling journaling on a component file will reduce performance of file updates; higher journaling levels have a greater impact.

Journaling levels 2 and 3 cannot be set unless the checksum option is also enabled.
The default level of journaling may be changed using the APL_FCREATE_ PROPS_J parameter (see User Guide).

\section*{Checksum Option}

The checksum option is enabled by default. This enables a damaged file to be repaired using DFCHK. It will however will reduce the performance of file updates slightly and result in larger component files. The default may be changed using the APL_FCREATE_PROPS_C parameter (See User Guide).

Enabling the checksum option on an existing non-empty component file, will mean that all components that had previously been written without a checksum, will be check-summed and converted. This operation which will take place when DFPROPS is changed, may not, therefore, be instantaneous.

Journaling and checksum settings may be changed at any time a file is exclusively tied.

\section*{Component files written with Checksum enabled cannot be read by versions of Dyalog APL prior to Version 12.1.}

\section*{Example}
tn*'myfile64' DFCREATE 0
'SEUJ' DFPROPS tn
64010
tn*'myfile32' DFCREATE 032
'SEUJ' DFPROPS tn
32000
The following expression disables Unicode and switches Journaling on. The function returns the previous settings:
('U' 0) ('J' 1) DFPROPS tn
10
Note that to set the value of just a single property, the following two statements are equivalent:
```

'J' 1 DFPROPS tn
(,c'J'1) DFPROPS tn

```

The Unicode property applies only to 64-bit component files. 32-bit component files may not contain Unicode character data and the value of the Unicode property is always 0 . To convert a 32 -bit component file to a 64 -bit component file, use DFCOPY.

Properties may be read by a task with DFREAD permission (access code 1), and set by a task with DF STAC access (8192). To set the value of the Journaling property, the file must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior to Version 12.0. If journaling is set to a value higher than 1 , or checksums are enabled, the file cannot be tied by versions prior to 12.1 .

\section*{Floating-Point Representation:}

The value of \(D F R\) determines the way that floating-point operations are performed.
If CFR is 645, all floating-point calculations are performed using IEEE 754 64-bit floating-point operations and the results of these operations are represented internally using binary \(64{ }^{1}\) floating-point format.

If DFR is 1287, all floating-point calculations are performed using IEEE 754-2008 128-bit decimal floating-point operations and the results of these operations are represented internally using decimal128 \({ }^{2}\) format.

Note that when you change DFR, its new value only affects subsequent floatingpoint operations and results. Existing floating-point values stored in the workspace remain unchanged.

The default value of CFR (its value in a clear ws) is configurable.
DFR has workspace scope, and may be localised. If so, like most other system variables, it inherits its initial value from the global environment.

However:Although DFR can vary, the system is not designed to allow "seamless" modification during the running of an application and the dynamic alteration of is not recommended. Strange effects may occur. For example, the type of a constant contained in a line of code (in a function or class), will depend on the value of DFR when the function is fixed. Thus, it would be possible for the first line of code above to return 0 , if it is in the body of a function. If the function was edited and while suspended and execution is resumed, the result would become 1 .

Also note:
\[
\begin{aligned}
& \square F R \leftarrow 1287 \\
& x+1 \div 3 \\
& \square F R \nleftarrow+645 \\
& x=1 \div 3
\end{aligned}
\]

1

\footnotetext{
\({ }^{1}\) http://en.wikipedia.org/wiki/Double_precision_floating-point_format
\({ }^{2}\) http://en.wikipedia.org/wiki/Decimal128_floating-point_format
}

The decimal number has 17 more 3 's. Using the tolerance which applies to binary floats (type 645), the numbers are equal. However, the "reverse" experiment yields 0 , as tolerance is much narrower in the decimal universe:
```

DFR+645
x<1\div3
DFR<1287
x=1\div3

```

0
Since \(\square F R\) can vary, it will be possible for a single workspace to contain floatingpoint values of both types (existing variables are not converted when DFR is changed). For example, an array that has just been brought into the workspace from external storage may have a different type from DFR in the current namespace. Conversion (if necessary) will only take place when a new floating-point array is generated as the result of "a calculation". The result of a computation returning a floating-point result will not depend on the type of the arrays involved in the expression: \(\square F R\) at the time when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:
DFR +1287
\(x+1.12 .23 .3\)
DFR +645
DDR x
1287
DDR 2 1 x
1287
128-bit decimal numbers not only have greater precision (roughly 34 decimal digits); they also have significantly larger range - from \({ }^{-1}\) E6145 to 1 E6145. Loss of precision is accepted on conversion from 645 to 1287, but the magnitude of a number may make the conversion impossible, in which case a DOMAIN ERROR is issued:
```

DFR<1287
x+1E1000
OFR+645 \diamond x+0

```
DOMAIN ERROR

When experimenting with \(\square F R\) it is important to note that numeric constants entered into the Session are evaluated (and assigned a data type) before the line is actually executed. This means that constants are evaluated according to the value of DFR that pertained before the line was entered. For example:
```

DFR +645
DFR

```

645
DFR↔1287 『 DDR 0.1
645
DDR 0.1
1287
WARNING: The use of COMPLEX numbers when DFR is 1287 is not recommended, because:
any 128 -bit decimal array into which a complex number is inserted or appended will be forced in its entirety into complex representation, potentially losing precision.
all comparisons are done using पDCT when DFR is 1287 , and the default value of \(1 \mathrm{E}^{-} 28\) is equivalent to 0 for complex numbers.

\section*{Access code 4096}
\(Y\) must be a simple integer scalar or 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

\section*{Examples}

DFRDAC 1
28210516385
0207316385
\(\begin{array}{lll}31 & -1 & 0\end{array}\)

\section*{File Read Component Information: \\ R \(-\square\) FRDCI \(Y\)}

\section*{Access code 512}
\(Y\) must be a simple integer vector of length 2 or 3 containing the file tie number, component number and an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is a 3 element numeric vector containing the following information:
1. the size of the component in bytes (i.e. how much disk space it occupies).
2. the user number of the user who last updated the component.
3. the time of the last update in 60ths of a second since 1st January 1970 (UTC).

\section*{Example}

\section*{File Read Component:}

\section*{R-DFREAD Y}

\section*{Access code 1}
\(Y\) must be a simple 2 or 3 element integer vector containing the file tie number, the component number, and an optional passnumber. If the passnumber is omitted it is assumed to be zero.

The result is the value of the array stored on the tied file at the given component number.

\section*{Examples}
\[
\text { pSALES*DFREAD } 1241
\]

3212
```

GetFile\leftarrow{Dio<0 ค Extract contents.
tie\leftarrow\omega पfstie 0 A new tie number.
fm to\leftarrow2\uparrow\fsize tie a first and next component.
cnos\&fm+rto-fm \& vector of component nos.
cvec\leftarrow{Dfread tie \omega}*"cnos A vector of components.
cvec{\alpha}Dfuntie tie \rho ... untie and return.
}

```

\section*{File Rename: \\ \(\{R\}+X\) DFRENAME \(Y\)}

\section*{Access code 128}
\(Y\) must be a simple 1 or 2 element integer vector containing a file tie number and an optional passnumber. If the passnumber is omitted it is assumed to be zero.
\(X\) must be a simple character scalar or vector containing the new name of the file.
This name must be in accordance with the operating system's conventions, and may be specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.
The shy result of पF RENAME is the tie number of the file.

\section*{Examples}
```

 'SALES' DFTIE 1
 'PROFIT' DFTIE 2
 \squarefNAMES
 SALES
PROF IT
'SALES.85' DFRENAME 1
'../profits/PROFIT.85' DFRENAME 2
DFNAMES
SALES. }8
../profits/PROFITS. }8
Rename}\leftarrow
fm to<w
Qfuntie to Dfrename fm Dftie o
}

```

\section*{File Replace Component: \(\quad\{R\} \leftarrow X\) DFREPLACE \(Y\)}

\section*{Access code 16}

Y must be a simple 2 or 3 element integer vector containing the file tie number, the component number, and an optional passnumber. If the passnumber is omitted it is assumed to be zero. The component number specified must lie within the file's component number limits.
\(X\) is any array (including, for example, the \(\square O R\) of a namespace), and overwrites the value of the specified component. The component information (see "File Read Component Information: " on page 458) is also updated.

The shy result of DFREPLACE is the file index (component number of replaced record).

\section*{Example}
\[
\text { SALES }+ \text { पFREAD } 1241
\]
(SALES×1.1) DFREPLACE 1241
Define a function to replace (index, value) pairs in a component file JMS.DCF:
```

Frep+{
tie*\alpha DFTIE O
*{\omega DFREPLACE tie \alpha}/`\omega
ZFUNTIE tie
}

```
            'jms'Frep(3 'abc')(29 'xxx')(7 'yyy')

\section*{File Resize: \\ \(\{R\}+\{X\}\) DFRESIZE \(Y\)}

\section*{Access code 1024}
\(Y\) must be a simple integer scalar or 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero.

X is an integer that specifies the maximum permitted size of the file in bytes. For a 64bit file, the value 0 means that there will be no explicit limit put on the size of the file. For a 32-bit file, the value of X is ignored and has no effect on the maximum file size.

An attempt to update a component file that would cause it to exceed its maximum size will fail with a FILE FULL error (21).A side effect of DFRESIZE is to cause the file to be compacted. Any interrupt entered at the keyboard during the compaction is ignored. Note that if the left argument is omitted, the file is simply compacted and the maximum file size remains unchanged.

During compaction, the file is restructured by reordering the components and by amalgamating the free areas at the end of the file. The file is then truncated and excess disk space is released back to the operating system. For a large file with many components, this process may take a significant time.

The shy result of \(\square\) FRESIZE is the tie number of the file.

\section*{Example}
'test'DFCREATE \(1 \diamond\) DFSIZE 1
\(111201.844674407 E 19\)
(10 1000p1.1) DFAPPEND \(1 \diamond\) DFSIZE 1
12802881.844674407 E19

100000 [FRESIZE 1 a Limit size to 100000 bytes
(10 1000p1.1) DFAPPEND 1
file full
(10 1000p1.1) DFAPPEND 1
\(\wedge\)
\[
\text { DFRESIZE } 1 \quad \rho \text { Force file compaction. }
\]
\(Y\) must be a simple integer scalar or 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero. The result is a 4 element numeric vector containing the following:
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline 1 & the number of first component \\
\hline 2 & \begin{tabular}{l}
\(1+\) the number of the last component, (i.e. the result of the next \\
DFAPPEND)
\end{tabular} \\
\hline 3 & the current size of the file in bytes \\
\hline 4 & the file size limit in bytes \\
\hline
\end{tabular}

\section*{Example}

DFSIZE 1
121652714294967295

\section*{File Set Access:}

\section*{\(\{R\}+X\) DFSTAC \(Y\)}

\section*{Access code 8192}
\(Y\) must be a simple integer scalar or 1 or 2 element vector containing the file tie number followed by an optional passnumber. If the passnumber is omitted it is assumed to be zero.
\(X\) must be a valid access matrix, i.e. a 3 column integer matrix with any number of rows.

See "File Access Control" in User Guide for further details.
The shy result of पF STAC is the tie number of the file.

\section*{Examples}

SALES DFCREATE 1
(3 3p28 210516385020731638531 -1 0) DFSTAC 1 ((DFRDAC 1)-21 2105 16385) DFSTAC 1
(13p0-1 0) DFSTAC 2

\section*{File Share Tie: \\ \(\{R\}+X\) DFSTIE \(Y\)}
\(Y\) must be 0 or a simple 1 or 2 element integer vector containing an available file tie number to be associated with the file for further file operations, and an optional passnumber. If the passnumber is omitted it is assumed to be zero. The tie number must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of the file to be tied. The file must be named in accordance with the operating system's conventions, and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. If it is already tied by another task, it must not be tied exclusively.

The shy result of पFSTIE is the tie number of the file.

\section*{Automatic Tie Number Allocation}

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates the first (closest to zero) available tie number and returns it as an explicit result. This allows you to simplify code. For example:
from:
\[
\begin{aligned}
& \text { tie }+1+\Gamma / 0 \text {, DFNUMS } \rho \text { With next available number, } \\
& \text { file DFSTIE tie } \quad \text {... share tie file. }
\end{aligned}
\]
to:
\[
\text { tie } \leftarrow \text { file CFSTIE } 0 \text { a Tie with 1st available number. }
\]

\section*{Example}
'SALES' DfSTIE 1
'../budget/COSTS' DFSTIE 2

\section*{Exclusive File Tie: \\ \(\{R\}+X\) DFTIE \(Y\)}

\section*{Access code 2}
\(Y\) must be 0 or a simple 1 or 2 element integer vector containing an available file tie number to be associated with the file for further file operations, and an optional passnumber. If the passnumber is omitted it is assumed to be zero. The tie number must not already be associated with a share tied or exclusively tied file.
\(X\) must be a simple character scalar or vector which specifies the name of the file to be exclusively tied. The file must be named in accordance with the operating system's conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by another user.

\section*{Automatic Tie Number Allocation}

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates the first (closest to zero) available tie number, and returns it as an explicit result. This allows you to simplify code. For example:
from:
\[
\begin{aligned}
& \text { tie }+1+[/ 0 \text {, DfNUMS } \rho \text { With next available number, } \\
& \text { file DFTIE tie a ... tie file. }
\end{aligned}
\]
to:
\[
\text { tie } \leftarrow \text { file CFTIE } 0 \text { の Tie with first available number. }
\]

The shy result of \(\square\) FTIE is the tie number of the file.

\section*{Examples}
```

'SALES' DfTIE 1
'../budget/COSTS' DFTIE 2
'../budget/expenses' DFTIE O

```

\section*{File Untie:}

\section*{\{R\}-पFUNTIE Y}
\(Y\) must be a simple integer scalar or vector (including Zilde). Files whose tie numbers occur in \(Y\) are untied. Other elements of \(Y\) have no effect.

If \(Y\) is empty, no files are untied, but all the interpreter's internal file buffers are flushed and the operating system is asked to flush all file updates to disk. This special facility allows the programmer to add extra security (at the expense of performance) for application data files.

The shy result of DFUNTIE is a vector of tie numbers of the files actually untied.

\section*{Example}
```

DFUNTIE DFNUMS a Unties all tied files
OfUNTIE 0 \& Flushes all buffers to disk

```

\section*{Fix Definition:}
\(Y\) is the representation form of a function or operator which may be:
- its canonical representation form similar to that produced by DCR except that redundant blanks are permitted other than within names and constants.
- its nested representation form similar to that produced by DNR except that redundant blanks are permitted other than within names and constants.
- its object representation form produced by DOR.
- its vector representation form similar to that produced by DVR except that additional blanks are permitted other than within names and constants.

DFX attempts to create (fix) a function or operator in the workspace or current namespace from the definition given by Y . DIO is an implicit argument of \(\mathrm{F} X\).

If the function or operator is successfully fixed, \(R\) is a simple character vector containing its name and the result is shy. Otherwise \(R\) is an integer scalar containing the ( IIO dependent) index of the row of the canonical representation form in which the first error preventing its definition is detected. In this case the result \(R\) is not shy.

Functions and operators which are pendent, that is, in the State Indicator without a suspension mark (*), retain their original definition until they complete, or are cleared from the State Indicator. All other occurrences of the function or operator assume the new definition. The function or operator will fail to fix if it has the same name as an existing variable, or a visible label.

\section*{\(R-\square\) INSTANCES \(Y\)}

DINSTANCES returns a list all the current instances of the Class specified by Y .
\(Y\) must be a reference to a Class.
\(R\) is a vector of references to all existing Instances of Class \(Y\).

\section*{Examples}

This example illustrates a simple inheritance tree or Class hierarchy. There are 3 Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)
:Class Animal
-.
:EndClass \(ค\) Animal
```

:Class Bird: Animal

```
...
:EndClass \(\rho\) Bird
:Class Parrot: Bird
...
:EndClass ค Parrot
Eeyore- CNEW Animal
Robin- पNEW Bird
Polly- पNEW Parrot
DINSTANCES Parrot
\#. [Parrot]
DINSTANCES Bird
\#.[Bird] \#.[Parrot]
OINSTANCES Animal
\#.[Animal] \#.[Bird] \#.[Parrot]
Eeyore.DDF 'eeyore'
Robin. DDF 'robin'
Polly.DDF 'polly'
```

 IINSTANCES Parrot
 polly
OINSTANCES Bird
robin polly
IINSTANCES Animal
eeyore robin polly

```

\section*{Index Origin:}

\section*{DIO}

DIO determines the index of the first element of a non-empty vector.
DIO may be assigned the value 0 or 1 . The value in a clear workspace is 1 .
OIO is an implicit argument of any function derived from the Axis operator ([K]), of the monadic functions Fix ( CF X), Grade Down ( \(\downarrow\) ), Grade Up (4), Index Generator ( ᄂ), Roll (?), and of the dyadic functions Deal (?), Grade Down ( \(\boldsymbol{\phi}\) ), Grade Up (\$), Index Of ( \()\), Indexed Assignment, Indexing, Pick ( \()\) and Transpose ( \((\) ).

\section*{Examples}

DIO -
乙 5
12345
DIO -0
25
01234
\(+/[0] 2\) 3pı6
357
'ABC',[-.5]' = '
ABC
= =

\section*{Key Label: R-DKL Y}

\section*{Classic Edition only.}
\(Y\) is a simple character vector or a vector of character vectors containing Input Codes for Keyboard Shortcuts. In the Classic Edition, keystrokes are associated with Keyboard Shortcuts by the Input Translate Table.
\(R\) is a simple character vector or a vector of character vectors containing the labels associated with the codes. If \(Y\) specifies codes that are not defined, the corresponding elements of \(R\) are the codes in \(Y\).

ZKL provides the information required to build device-independent help messages into applications, particularly full-screen applications using \(\square S M\) and \(\square S R\).

\section*{Examples:}

DKL 'RC'
Right
```

 OKL 'ER' 'EP' 'QT' 'F1' 'F13'
 Enter Esc Shift+Esc F1 Shift+F1

```

\section*{Line Count:}

This is a simple vector of line numbers drawn from the state indicator (See "The State Indicator" on page 110). The most recently activated line is shown first. If a value corresponds to a defined function in the state indicator, it represents the current line number where the function is either suspended or pendent.

The value of CLC changes immediately upon completion of the most recently activated line, or upon completion of execution within \(\pm\) or \(\overline{0}\). If a \(\overline{\text { STOP control is set, }}\) OLC identifies the line on which the stop control is effected. In the case where a stop control is set on line 0 of a defined function, the first entry in DLC is 0 when the control is effected.

The value of CLC in a clear workspace is the null vector.

\section*{Examples}
```

)SI
 \#.TASK1[5]*
\$
\#.BEGIN[3]

```
DLC
53

\(Y\) must be a simple character scalar or vector containing the identification of a saved workspace.

If \(Y\) is ill-formed or does not identify a saved workspace or the user account does not have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in \(Y\). The active workspace is lost. If the loaded workspace was saved by the ) SAVE system command, the latent expression ( \(\square L X\) ) is immediately executed, unless APL was invoked with the -x option. If the loaded workspace was saved by the DSAVE system function, execution resumes from the point of exit from the DSAVE function, with the result of the \(\square S A V E\) function being 0 .

The workspace identification and time-stamp when saved is not displayed.
If the workspace contains any GUI objects whose Visible property is 1 , these objects will be displayed. If the workspace contains a non-empty \(\square S M\) but does not contain an SM GUI object, the form defined by \(\square S M\) will be displayed in a window on the screen.

Under UNIX, the interpreter attempts to open the file whose name matches the contents of \(Y\). Under Windows, unless \(Y\) contains at least one ".", the interpreter will append the file extension ".DWS" to the name.

\section*{Lock Definition: \\ \(\{X\}\) LLOCK \(Y\)}
\(Y\) must be a simple character scalar, or vector which is taken to be the name of a defined function or operator in the active workspace.

The active referent to the name in the workspace is locked. Stop, trace and monitor settings, established by the DSTOP, DTRACE and DMONITORfunctions, are cancelled.

The optional left argument \(X\) specifies to what extent the function code is hidden. \(X\) may be 1,2 or 3 (the default) with the following meaning:
1. The object may not be displayed and you may not obtain its character form using ICR, ZVR or DNR.
2. Execution cannot be suspended with the locked function or operator in the state indicator. On suspension of execution the state indicator is cut back to the statement containing the call to the locked function or operator.
3. Both 1 and 2 apply. You can neither display the locked object nor suspend execution within it.

Locks are additive, so that the following are equivalent:
1 ZLOCK'FOO'
2 [LOCK'FOO'
3 ZLOCK'FOO'
DOMAIN ERROR is reported if:
- \(Y\) is ill-formed.
- The name in \(Y\) is not the name of a visible defined function or operator which is not locked.

\section*{Examples}

DVR'FOO'
\(\nabla \mathrm{R}+\mathrm{FOO}\)
[1]
\(R<10\)
\(\nabla\)
DLOCK'FOO'
DVR'FOO'

DLOCK \({ }^{\prime}\) FOO'
DOMAIN ERROR
DLOCK 'FOO'

\section*{Latent Expression:}

This may be a character vector or scalar representing an APL expression. The expression is executed automatically when the workspace is loaded. If APL is invoked using the -x flag, this execution is suppressed.

The value of CLX in a clear workspace is ' \('\).

\section*{Example}
```

 OLX<'''GOOD MORNING PETE'''
)SAVE GREETING
 GREETING saved Tue Sep 8 10:49:29 1998
)LOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

```

IMAP function associates a mapped file with an APL array in the workspace.
Two types of mapped files are supported; APL and raw. An APL mapped file contains the binary representation of a Dyalog APL array, including its header. A file of this type must be created using the supplied utility function \(\triangle\) MPUT. When you map an APL file, the rank, shape and data type of the array is obtained from the information on the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you must specify the characteristics of the APL array to be associated with this data. In particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left argument to DMAP.

The right argument \(Y\) specifies the name of the file to be mapped and, optionally, the access type and a start byte in the file. \(Y\) may be a simple character vector, or a 2 or 3element nested vector containing:
1. file name (character scalar/vector)
2. access code (character scalar/vector) : one of : 'R', 'W', 'r' or 'w'
3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0 )

If X is specified, it defines the type and shape to be associated with raw data on file. X must be an integer scalar or vector. The first item of \(X\) specifies the data type and must be one of the following values:
\begin{tabular}{|l|l|}
\hline Classic Edition & \(11,82,83,163,323\) or 645 \\
\hline Unicode Edition & \(11,80,83,160,163,320,323\) or 645 \\
\hline
\end{tabular}

The values are more fully explained in "Data Representation (Monadic):" on page 423.

Following items determine the shape of the mapped array. A value of \({ }^{-1} 1\) on any (but normally the first) axis in the shape is replaced by the system to mean: read as many complete records from the file as possible. Only one axis may be specified in this way.

NB: If \(X\) is a singleton, the data on the file is mapped as a scalar and only the first value on the file is accessible.

If no left argument is given, file is assumed to contain a simple APL array, complete with header information (type, rank, shape, etc). Such mapped files may only be updated by changing the associated array using indexed/pick assignment: \(\operatorname{var}[a]<b\), the new values must be of the same type as the originals.

Note that a raw mapped file may be updated only if its file offset is 0 .

\section*{Examples}

Map raw file as a read-only vector of doubles:
```

vec*645 -1 ПMAP'c:\myfile'

```

Map raw file as a 20 -column read-write matrix of 1-byte integers:
```

mat<83 -1 20 DMAP'c:\myfile' 'W'

```

Replace some items in mapped file:
```

mat[2 3;4 5]+2 2\rho\imath4

```

Map bytes 100-180 in raw file as a \(5 \times 2\) read-only matrix of doubles:
```

dat<645 5 2 पMAP'c:\myfile' 'R' 100

```

Put simple 4-byte integer array on disk ready for mapping:

Then, map a read-write variable:
var*-पMAP'c:\myvar' 'w'

Note that a mapped array need not be named. In the following example, a 'raw' file is mapped, summed and released, all in a single expression:
\[
+/ 163 \text {-1 पMAP'c:\shorts.dat' }
\]

42
If you fail to specify the shape of the data, the data on file will be mapped as a scalar and only the first value in the file will be accessible:
-86

\section*{Compatibility between Editions}

In the Unicode Edition DMAP will fail with a TRANSLATION ERROR (event number 92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was written using data type 82 , the file may be mapped with data type 83 and the characters extracted by indexing into DAVU .

\section*{Migration Level:}

GML determines the degree of migration of the Dyalog APL language towards IBM's APL2. Setting this variable to other than its default value of 0 changes the interpretation of certain symbols and language constructs.
\begin{tabular}{|c|c|c|}
\hline -ML +0 & & Native Dyalog (Default) \\
\hline DML +1 & \(Z \leftarrow \in R\) & Monadic ' \(\epsilon\) ' is interpreted as 'enlist' rather than 'type'. \\
\hline DML -2 & \(Z+\uparrow R\) & Monadic ' \(\uparrow\) ' is interpreted as 'first' rather than 'mix'. \\
\hline & \(Z \leftrightarrow \sim\) & Monadic ' \(\boldsymbol{\nu}\) ' is interpreted as 'mix' rather than 'first'. \\
\hline & \(Z ↔\) R & Monadic ' \(\equiv\) ' returns a positive rather than a negative value, if its argument has non-uniform depth. \\
\hline \(\square M L \leftarrow 3\) & \(R \leftarrow X \subset[K] Y\) & Dyadic ' \(c\) ' follows the APL2 (rather than the original Dyalog APL) convention. \\
\hline & QTC & The order of the elements of \(\square T C\) is the same as in APL2. \\
\hline
\end{tabular}

Subsequent versions of Dyalog APL may provide further migration levels.

\section*{Examples}
\[
x+2\left(\begin{array}{ll}
3 & 4
\end{array}\right)
\]
\[
\square M L \leftarrow 0
\]
\[
\in X
\]
\[
\begin{array}{lll}
0 & 0 & 0 \\
\uparrow x
\end{array}
\]
\[
\begin{array}{ll}
2 & 0 \\
3 & 4
\end{array}
\]
\[
34
\]
っx
\[
2
\]
\[
-2
\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{¢ \(\times\)} \\
\hline 2 & \\
\hline 2 & \\
\hline 3 & \\
\hline & \\
\hline 2 & \\
\hline -2 & \\
\hline
\end{tabular}
\(\square M L \leftarrow 2\)
\(\square\)
234
\[
\uparrow X
\]
2
دX
20
34
三X

\section*{Set Monitor: \\ \(\{R\}+X\) DMONITOR Y}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. X must be a simple non-negative integer scalar or vector. \(R\) is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by Y on which a monitor is to be placed. Numbers outside the range of line numbers in the function or operator (other than 0 ) are ignored. The number 0 indicates that a monitor is to be placed on the function or operator as a whole. The value of \(X\) is independent of DIO.
\(R\) is a vector of numbers on which a monitor has been placed in ascending order. The result is suppressed unless it is explicitly used or assigned.

The effect of DMONITOR is to accumulate timing statistics for the lines for which the monitor has been set. See "Query Monitor: " on page 476 for details.

\section*{Examples}
\(+(0,210)\) DMONITOR 'FOO'
012345
Existing monitors are cancelled before new ones are set:
+1 [MONITOR 'FOO'
1
All monitors may be cancelled by supplying an empty vector:
\(\theta\) [MONITOR 'FOO'
Monitors may be set on a locked function or operator, but no information will be reported. Monitors are saved with the workspace.

\section*{Query Monitor:}

\section*{\(R \leftarrow\) MONITOR Y}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. \(R\) is a simple non-negative integer matrix of 5 columns with one row for each line in the function or operator \(Y\) which has the monitor set, giving:
\begin{tabular}{|l|l|}
\hline Column 1 & Line number \\
\hline Column 2 & Number of times the line was executed \\
\hline Column 3 & CPU time in milliseconds \\
\hline Column 4 & Elapsed time in milliseconds \\
\hline Column 5 & Reserved \\
\hline
\end{tabular}

The value of 0 in column one indicates that the monitor is set on the function or operator as a whole.

\section*{Example}


\section*{Name Association:}

\section*{\(\{R\}+\{X\} \square N A\) Y}
—NA provides access from APL to compiled functions within a Dynamic Link Library (DLL). A DLL is a collection of functions typically written in C (or \(\mathrm{C}++\) ) each of which may take arguments and return a result.

Instructional examples using DNA can be found in supplied workspace: QUADNA.DWS.

The DLL may be part of the standard operating system software, purchased from a third party supplier, or one that you have written yourself.

The right argument \(Y\) is a character vector that identifies the name and syntax of the function to be associated. The left argument \(X\) is a character vector that contains the name to be associated with the external function. If the DNA is successful, a function (name class 3 ) is established in the active workspace with name \(X\). If \(X\) is omitted, the name of the external function itself is used for the association.

The shy result \(R\) is a character vector containing the name of the external function that was fixed.

For example, math. dll might be a library of mathematical functions containing a function divide. To associate the APL name div with this external function:
'div' DNA 'F8 math|divide I4 I4'
where F8 and I4, specify the types of the result and arguments expected by divide. The association has the effect of establishing a new function: di v in the workspace, which when called, passes its arguments to divide and returns the result.
)fns
div
div 104
2.5

\section*{Type Declaration}

In a compiled language such as C, the types of arguments and results of functions must be declared explicitly. Typically, these types will be published with the documentation that accompanies the DLL. For example, function divide might be declared:
```

double divide(int32_t, int32_t);

```
which means that it expects two long (4-byte) integer arguments and returns a double (8-byte) floating point result. Notice the correspondence between the C declaration and the right argument of \(\square N A\) :
```

C: double divide (int32_t, int32_t);
APL:'div' DNA 'F8 mathldivide I4 I4 '

```

It is imperative that care be taken when coding type declarations. A DLL cannot check types of data passed from APL. A wrong type declaration will lead to erroneous results or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of \(\square N A\) is:
[result] library|function [arg1] [arg2] ...
Note that functions associated with DLLs are never dyadic. All arguments are passed as items of a (possibly nested) vector on the right of the function.

\section*{Locating the DLL}

The DLL may be specified using a full pathname, file extension, and function type.

\section*{Pathname:}

APL uses the LoadLibrary () system function under Windows and dlopen () under UNIX and LINUX to load the DLL. If a full or relative pathname is omitted, these functions search standard operating system directories in a particular order. For further details, see the operating system documentation about these functions.

Alternatively, a full or relative pathname may be supplied in the usual way:
ZNA'... c:\mydir\mydll|foo ...'

\section*{Errors:}

If the specified DLL (or a dependent DLL) fails to load it will generate:
FILE ERROR 1 No such file or directory
If the DLL loads successfully, but the specified library function is not accessible, it will generate:

VALUE ERROR

\section*{File Extension:}

Under Windows, if the file extension is omitted, \(\mathbf{~ d l l}\) is assumed. Note that some DLLs are in fact .exe files, and in this case the extension must be specified explicitly:
[NA'... mydll.exelfoo ...'

\section*{Example}
\[
\text { [NA'... mydll.exe.P32|foo ...'ค } 32 \text { bit Pascal }
\]

\section*{Call by Ordinal Number}

Under Windows, a DLL may associate an ordinal number with any of its functions. This number may then be used to call the function as an alternative to calling it by name. Using DNA to call by ordinal number uses the same syntax but with the function name replaced with its ordinal number. For example:
[NA'... mydll|57 ...'

\section*{Multi-Threading}

Appending the ' \(\&\) ' character to the function name causes the external function to be run in its own system thread. For example:
[NA'... mydll|foo\& ...'

This means that other APL threads can run concurrently with the one that is calling the \(\quad\) NA function.

\section*{Data Type Coding Scheme}

The type coding scheme introduced above is of the form:
[direction] [special] type [width] [array]
The options are summarised in the following table and their functions detailed below.
\begin{tabular}{|l|l|l|}
\hline Description & Symbol & Meaning \\
\hline \multirow{4}{*}{ Direction } & \(<\) & Pointer to array input to DLL function. \\
\cline { 2 - 3 } & \(>\) & Pointer to array output from DLL function \\
\cline { 2 - 4 } & \(=\) & Pointer to input/output array. \\
\hline \multirow{5}{*}{ Special } & 0 & Null-terminated string. \\
\cline { 2 - 4 } & \(\#\) & Byte-counted string \\
\hline \multirow{5}{*}{ Type } & I & int \\
\cline { 2 - 3 } & U & unsigned int \\
\cline { 2 - 3 } & C & char \\
\cline { 2 - 3 } & T & char \({ }^{1}\) \\
\cline { 2 - 3 } & F & float \\
\cline { 2 - 3 } & D & decimal \\
\cline { 2 - 3 } & J & complex \\
\cline { 2 - 3 } & P & uintptr-t \({ }^{2}\) \\
\cline { 2 - 3 } & A & APL array \\
\cline { 2 - 3 } & Z & APL array with header (as passed to a TCP/IP socket) \\
\hline
\end{tabular}
\({ }^{1}\) Classic Edition: - translated to/from ANSI
\({ }^{2}\) equivalent to U4 on 32-bit Versions and U8 on 64-bit Versions
\begin{tabular}{|l|l|l|}
\hline Description & Symbol & Meaning \\
\hline \multirow{4}{*}{ Width } & 1 & 1-byte \\
\cline { 2 - 3 } & 2 & 2-byte \\
\cline { 2 - 3 } & 4 & 4-byte \\
\cline { 2 - 3 } & 8 & 8-byte \\
\cline { 2 - 3 } & 16 & 16-byte (128-bit) \\
\hline \multirow{2}{*}{ Array } & {\([\mathrm{n}]\)} & Array of length \(n\) elements \\
\cline { 2 - 3 } & {[]} & Array, length determined at call-time \\
\hline Structure & \(\{\ldots\}\) & Structure. \\
\hline
\end{tabular}

In the Classic Edition, C specifies untranslated character, whereas T specifies that the character data will be translated to/from DAV.

In the Unicode Edition, C and T are identical (no translation of character data is performed) except that for C the default width is 1 and for T the default width is "wide" ( 2 bytes under Windows, 4 bytes under UNIX).

The use of T with default width is recommended to ensure portability between Editions.

\section*{Direction}

C functions accept data arguments either by value or by address. This distinction is indicated by the presence of a ' \(\star\) ' or ' [ ] ' in the argument declaration:
```

int num1; // value of num1 passed.
int *num2; // Address of num2 passed.
int num3[]; // Address of num3 passed.

```

An argument (or result) of an external function of type pointer, must be matched in the DNA call by a declaration starting with one of the characters: <, >, or \(=\).

In C, when an address is passed, the corresponding value can be used as either an input or an output variable. An output variable means that the C function overwrites values at the supplied address. Because APL is a call-by-value language, and doesn't have pointer types, we accommodate this mechanism by distinguishing output variables, and having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as starting with one of the characters: <, > or \(=\).
< indicates that the address of the argument will be used by C as an input variable and values at the address will not be over-written.
indicates that C will use the address as an output variable. In this case, APL must allocate an output array over which C can write values. After the call, this array will be included in the nested result of the call to the external function.
indicates that C will use the address for both input and output. In this case, APL duplicates the argument array into an output buffer whose
\(=\quad\) address is passed to the external function. As in the case of an output only array, the newly modified copy will be included in the nested result of the call to the external function.

\section*{Examples}
<I2 Pointer to 2-byte integer - input to external function
\(>C\) Pointer to character output from external function.
\(=\mathrm{T} \quad\) Pointer to character input to and output from function.
=A Pointer to APL array modified by function.

\section*{Special}

In C it is common to represent character strings as null-terminated or byte counted arrays. These special data types are indicated by inserting the symbol 0 (null-terminated) or \# (byte counted) between the direction indicator (<, >, =) and the type ( T or C) specification. For example, a pointer to a null-terminated input character string is coded as \(<O T\) [ ], and an output one coded as \(>0 T\) [ ].

Note that while appending the array specifier ' [ ]' is formally correct, because the presence of the special qualifier ( 0 or \#) implies an array, the '[ ]' may be omitted: \(<0 \mathrm{~T},>0 \mathrm{~T},=\# \mathrm{C}\), etc.

Note also that the 0 and \# specifiers may be used with data of all types (excluding A and Z) and widths. For example, in the Classic Edition, <OU2 may be useful for dealing with Unicode.

\section*{Type}

The data type of the argument is represented by one of the symbols \(i, u, c, t, f, a\), which may be specified in lower or upper case:
\begin{tabular}{|c|c|c|}
\hline & Type & Description \\
\hline I & Integer & The value is interpreted as a 2 s complement signed integer \\
\hline U & Unsigned integer & The value is interpreted as an unsigned integer \\
\hline C & Character & \begin{tabular}{l}
The value is interpreted as a character. In the Unicode Edition, the value maps directly onto a Unicode code point. In the Classic Edition, the value is interpreted as an index into \(\square A V\). This means that \(\square A V\) positions map onto corresponding ANSI positions. \\
For example, with DIO \(=0\) : \\
\(\operatorname{DAV}[35]=\) 's', maps toANSI [35] = '
\end{tabular} \\
\hline & Type & Description \\
\hline T & Translated character & \begin{tabular}{l}
The value is interpreted as a character. In the Unicode Edition, the value maps directly onto a Unicode code point. In the Classic Edition, the value is translated using standard Dyalog DAV to ANSI translation. This means that A V characters map onto corresponding ANSI characters. \\
For example, with DIO \(=0\) : \\
\(\operatorname{\square AV}[35]=\) 's', maps toANSI[115] = 's'
\end{tabular} \\
\hline F & Float & The value is interpreted as an IEEE 754-2008 binary 64 floating point number \\
\hline D & Decimal & The value is interpreted as an IEEE 754-2008 decimal128 floating point number (DPD format) \\
\hline J & Complex & \\
\hline P & uintptr-t & This is equivalent to U4 on 32-bit versions and U8 on 64-bit Versions \\
\hline Z & APL array with header & This is the same format as is used to transmit APL arrays over TCP/IP Sockets \\
\hline
\end{tabular}

\section*{Width}

The type specifier may be followed by the width of the value in bytes. For example:
I4 4-byte signed integer.
U2 2-byte unsigned integer.
F8 8-byte floating point number.
F4 4-byte floating point number.
D16 16-byte decimal floating-point number
\begin{tabular}{|l|l|l|}
\hline Type & Possible values for Width & Default value for Width \\
\hline I & \(1,2,4,8\) & 4 \\
\hline U & \(1,2,4,8\) & 4 \\
\hline C & \(1,2,4\) & 1 \\
\hline T & \(1,2,4\) & wide character(see below) \\
\hline F & 4,8 & 8 \\
\hline D & 16 & 16 \\
\hline J & 16 & 16 \\
\hline P & Not applicable & \\
\hline A & Not applicable & \\
\hline Z & Not applicable & \\
\hline
\end{tabular}

In the Unicode Edition, the default width is the width of a wide character according to the convention of the host operating system. This translates to T2 under Windows and T4 under UNIX or Linux.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer results.

\section*{Examples}

I2 16-bit integer
<I4 Pointer to input 4-byte integer
U Default width unsigned integer
\(=\) F4 Pointer to input/output 4-byte floating point number.

\section*{Arrays}

Arrays are specified by following the basic data type with [ \(n\) ] or [ ], where \(n\) indicates the number of elements in the array. In the C declaration, the number of elements in an array may be specified explicitly at compile time, or determined dynamically at runtime. In the latter case, the size of the array is often passed along with the array, in a separate argument. In this case, \(n\), the number of elements is omitted from the specification. Note that C deals only in scalars and rank 1 (vector) arrays.
```

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

```
could be coded as:
I[10] vector of 10 ints.
\(U U[]\) unsigned integer followed by an array of unsigned integers.
Confusion sometimes arises over a difference in the declaration syntax between C and DNA. In \(C\), an argument declaration may be given to receive a pointer to either a single scalar item, or to the first element of an array. This is because in C, the address of an array is deemed to be the address of its first element.
```

void foo (char *string);
char ch = 'a', ptr = "abc";
foo(\&ch);// call with address of scalar.
foo(ptr);// call with address of array.

```

However, from APL's point of view, these two cases are distinct and if the function is to be called with the address of (pointer to) a scalar, it must be declared: ' \(<T\) ' . Otherwise, to be called with the address of an array, it must be declared: ' <T [ ] '. Note that it is perfectly acceptable in such circumstances to define more than one name association to the same DLL function specifying different argument types:
```

'FooScalar'DNA'mydll|foo <T' \diamond FooScalar'a'
'FooVector'[NA'mydll|foo <T[]' \diamond FooVector'abc'

```

\section*{Structures}

Arbitrary data structures, which are akin to nested arrays, are specified using the symbols \{\}. For example, the code \{F8 I2\} indicates a structure comprised of an 8byte float followed by a 2-byte int. Furthermore, the code < \{F8 I2\}[3] means an input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:
```

typedef struct
{
double f;
short i;
} mystruct;

```

A function defined to receive a count followed by an input pointer to an array of such structures:
```

void foo(unsigned count, mystruct *str);

```

An appropriate \(\square N A\) declaration would be:
\[
\text { DNA'mydll.foo U <\{F8 I2\}[]' }
\]

A call on the function with two arguments - a count followed by a vector of structures:
\[
\text { foo } 4, c(1.43)(5.91)(6.52)(00)
\]

Notice that for the above call, APL converts the two Boolean ( 00 ) elements to an 8 -byte float and a 2 -byte int, respectively.

\section*{Specifying Pointers Explicitly}

ZNA syntax enables APL to pass arguments to DLL functions by value or address as appropriate. For example if a function requires an integer followed by a pointer to an integer:
```

void fun(int valu, int *addr);

```

You might declare and call it:
\[
\text { QNA'mydll|fun I <I' } \diamond \text { fun } 4242
\]

The interpreter passes the value of the first argument and the address of the second one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is if the DLL function requires a null pointer, and the second is where you want to pass on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass the pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL function), you must code a separate DNA definition.
\[
\text { 'fun_null'ロNA'mydll|fun I P' } \diamond \text { fun_null } 420
\]

Now APL passes the value of the second argument (in this case 0 - the null pointer), rather than its address.

Note that by using P, which is 4-byte for 32 -bit processes and 8 -byte for 64 -bit processes, you will ensure that the code will run unchanged under both 32-bit and 64-bit Versions of Dyalog APL.

\section*{Using a Function}

A DLL function may or may not return a result, and may take zero or more arguments. This syntax is reflected in the coding of the right argument of DNA. Notice that the corresponding associated APL function is niladic or monadic (never dyadic), and that it always returns a vector result - a null one if there is no output from the function. See Result Vector section below. Examples of the various combinations are:

\section*{DLL function Non-result-returning:}


\section*{DLL function Result-returning:}


When the external function is called, the number of elements in the argument must match the number defined in the DNA definition. Using the example functions defined above:
\[
\begin{array}{ll}
\text { fn1 } & \rho \text { Niladic Function. } \\
\text { fn2, c'Single String' } & \text { A } 1 \text {-element arg } \\
\text { fn3 'This' 'That' } & \text { ค } 2 \text {-element arg }
\end{array}
\]

Note in the second example, that you must enclose the argument string to produce a single item (nested) array in order to match the declaration. Dyalog converts the type of a numeric argument if necessary, so for example in fn5 defined above, a Boolean value would be converted to double floating point (F8) prior to being passed to the DLL function.

\section*{Pointer Arguments}

When passing pointer arguments there are three cases to consider.

\section*{< Input pointer:}

In this case you must supply the data array itself as argument to the function. A pointer to its first element is then passed to the DLL function.
fn2 c'hello'

\section*{> Output pointer:}

Here, you must supply the number of elements that the output will need in order for APL to allocate memory to accommodate the resulting array.
```

fn6 10 'world' A 1st arg needs space for 10 ints.

```

Note that if you were to reserve fewer elements than the DLL function actually used, the DLL function would write beyond the end of the reserved array and may cause the interpreter to crash with a System Error (syserr 999 on Windows or SIGSEGV on Unix).

\section*{= Input/Output:}

As with the input-only case, a pointer to the first element of the argument is passed to the DLL function. The DLL function then overwrites some or all of the elements of the array, and the new value is passed back as part of the result of the call. As with the output pointer case, if the input array were too short, so that the DLL wrote beyond the end of the array, the interpreter would almost certainly crash.
fn3 '.....' 'hello'

\section*{Result Vector}

In APL, a function cannot overwrite its arguments. This means that any output from a DLL function must be returned as part of the explicit result, and this includes output via 'output' or 'input/output' pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first item of the result is the defined explicit result of the external function, and subsequent items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an explicit result) + the number of output or input/output arguments.
\begin{tabular}{|c|c|c|c|}
\hline QNA Declaration & Result & Output Arguments & Result Length \\
\hline mydll|fn1 & 0 & & 0 \\
\hline mydll|fn2 <0T & 0 & 0 & 0 \\
\hline mydll|fn3 \(=0 T\) <OT & 0 & 10 & 1 \\
\hline I4 mydll|fn4 & 1 & & 1 \\
\hline I4 mydll|fn5 F8 & 1 & 0 & 1 \\
\hline I4 mydll|fn6 >I4[] <0T & 1 & 10 & 2 \\
\hline
\end{tabular}

As a convenience, if the result would otherwise be a 1 -item vector, it is disclosed. Using the third example above:

5
ofn3 '.....' 'abc'
f n 3 has no explicit result; its first argument is input/output pointer, and its second argument is input pointer. Therefore as the length of the result would be 1 , it has been disclosed.

\section*{ANSI /Unicode Versions of Library Calls}

Under Windows, most library functions that take character arguments, or return character results have two forms: one Unicode (Wide) and one ANSI. For example, a function such as MessageBox (), has two forms MessageBoxA () and MessageBoxW ( ) . The A stands for ANSI (1-byte) characters, and the \(W\) for wide (2byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for the Dyalog Edition you are using, i.e. MessageBoxA () for the Classic Edition, but MessageBoxW () for the Unicode Edition.

To simplify writing portable code for both Editions, you may specify the character * instead of A or \(W\) at the end of a function name. This will be replaced by A in the Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to \(\square N A\) ), will be without the trailing letter (MessageBox).

\section*{Type Definitions (typedefs)}

The C language encourages the assignment of defined names to primitive and complex data types using its \#define and typedef mechanisms. Using such abstractions enables the C programmer to write code that will be portable across many operating systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally refer to the type of function arguments using defined names such as HANDLE or LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C primitive equivalents, and indeed, DLLs from sources other than Microsoft may well employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to convert typedefs to primitive C types and thence to DNA declarations. The documentation may well refer you to the 'include' files which are part of the Software Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their INA equivalents might prove useful.
\begin{tabular}{|c|c|}
\hline Windows typedef & ONA equivalent \\
\hline HWND & P \\
\hline HANDLE & P \\
\hline GLOBALHANDLE & P \\
\hline LOCALHANDLE & P \\
\hline DWORD & U4 \\
\hline WORD & U2 \\
\hline BYTE & U1 \\
\hline LPSTR & =OT[] (note 1) \\
\hline LPCSTR & <OT[] (note 2) \\
\hline WPARAM & U \\
\hline LPARAM & U4 \\
\hline LRESULT & I4 \\
\hline BOOL & I \\
\hline UINT & U \\
\hline ULONG & U4 \\
\hline ATOM & U2 \\
\hline HDC & P \\
\hline HBITMAP & P \\
\hline HBRUSH & P \\
\hline HFONT & P \\
\hline HICON & P \\
\hline HMENU & P \\
\hline HPALETTE & P \\
\hline HMETAFILE & P \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Windows typedef & QNA equivalent \\
\hline HMODULE & P \\
\hline HINSTANCE & P \\
\hline COLORREF & \(\{\mathrm{U} 1[4]\}\) \\
\hline POINT & \(\{\mathrm{I} \mathrm{I}\}\) \\
\hline POINTS & \(\{\) I2 I 2\(\}\) \\
\hline RECT & \(\{\mathrm{I} \mathrm{I} \mathrm{I} \mathrm{I}\}\) \\
\hline CHAR & T or C \\
\hline
\end{tabular}

\section*{Notes}
1. LPSTR is a pointer to a null-terminated string. The definition does not indicate whether this is input or output, so the safest coding would be \(=0 T[\) ] (providing the vector you supply for input is long enough to accommodate the result). You may be able to improve simplicity or performance if the documentation indicates that the pointer is 'input only' ( \(\angle 0 \mathrm{~T}\) [ ]) or 'output only' ( \(>0\) T [ ]). See Direction above.
2. LPCSTR is a pointer to a constant null-terminated string and therefore coding \(<0 T[]\) is safe.
3.
4. Note that the use of type \(T\) with default width ensures portability of code between Classic and Unicode Editions. In the Classic Edition, T (with no width specifier) implies 1-byte characters which are translated between DAV and ASCII, while In the Unicode Edition, T (with no width specifier) implies 2-byte (Unicode) characters.

\section*{Dyalog32.dII or Dyalog64.dII}

Included with Dyalog APL are utility DLLs called dyalog32.dll and dyalog64.dll. These DLLs contain three functions: MEMCPY, STRNCPY and SRTLEN.

\section*{MEMCPY}

MEMCPY is an extremely versatile function used for moving arbitrary data between memory buffers.

Its \(C\) definition is:
```

void *MEMCPY(// copy memory
void *to, // target address
void *fm, // source address
size_t size // number of bytes to copy
);

```

MEMCPY copies size bytes starting from source address \(f m\), to destination address to. The source and destination areas should not overlap; if they do the behaviour is undefined and the result is the first argument.

MEMCPY's versatility stems from being able to associate to it using many different type declarations.

\section*{Example}

Suppose a global buffer (at address: addr) contains (numb) double floating point numbers. To copy these to an APL array, we could define the association:
```

'doubles' DNA 'dyalog32|MEMCPY >F8[] I4 U4'
doubles numb addr (numb*8)

```

Notice that:
- As the first argument to doubles is an output argument, we must supply the number of elements to reserve for the output data.
- MEMCPY is defined to take the number of bytes to copy, so we must multiply the number of elements by the element size in bytes.

\section*{Example}

Suppose that a database application requires that we construct a record in global memory prior to writing it to file. The record structure might look like this:
```

typedef struct {
int empno;// employee number.
float salary;// salary.
char name[20];// name.
} person;

```

Then, having previously allocated memory (addr) to receive the record, we can define:
```

 'prec' DNA 'dyalog32|MEMCPY I4 <{P F4 T[20]} U4'
 prec addr(99 12345.60 'Charlie Brown')(4+4+20)

```

\section*{STRNCPY}

STRNCPY is used to copy null-terminated strings between memory buffers.
Its \(C\) definition is:
```

void *STRNCPY(// copy null-terminated string
char *to,// target address
char *fm,// source address
size t size// MAX number of chars to copy
);

```

STRNCPY copies a maximum of size characters from the null-terminated source string at address \(f m\), to the destination address \(t o\). If the source and destination strings overlap, the result is the first argument.

If the source string is shorter than size, null characters are appended to the destination string.

If the source string (including its terminating null) is longer than size, only size characters are copied and the resulting destination string is not null-terminated

\section*{Example}

Suppose that a database application returns a pointer (addr) to a structure that contains two pointers to (max 20-char) null-terminated strings.
```

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

```

To copy the names from the structure:
```

 'get'\squareNA'dyalog32|STRNCPY >0T[] P U4'
 get 20 addr 20
 Charlie
get 20 (addr+4) 20
Brown

```

Note that on a 64 -bit Version, DFR will need to be 1287 for the addition to be reliable.

To copy data from the workspace into an already allocated (new) structure:
```

'put'DNA'dyalog32|STRNCPY I4 <OT[] U4'
put new 'Bo' 20
put (new+4) 'Peep' 20

```

Notice in this example that you must ensure that names no longer than 19 characters are passed to put. More than 19 characters would not leave STRNCPY enough space to include the trailing null, which would probably cause the application to fail.

\section*{STRLEN}

STRLEN calculates the length of a C string (a 0 -terminated string of bytes in memory). Its \(C\) declaration is:
```

size_t STRLEN(// calculate length of string
const char *s // address of string
);

```

\section*{Example}

Suppose that a database application returns a pointer (addr) to a null-terminated string and you do not know the upper bound on the length of the string.

To copy the string into the workspace:
```

 'len' ZNA'P dyalog32|STRLEN P'
 'cpy'\squareNA'dyalog32|MEMCPY >T[] P P'
 cpy l addr (l\leftarrowlen addr)
 Bartholemew

```

\section*{Examples}

The following examples all use functions from the Microsoft Windows user32.dll.
This DLL should be located in a standard Windows directory, so you should not normally need to give the full path name of the library. However if trying these examples results in the error message 'FILE ERROR 1 No such file or directory', you must locate the DLL and supply the full path name (and possibly extension).

\section*{Example 1}

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime(void);
The following statements would provide access to this routine through an APL function of the same name.
```

 ZNA 'U user32|GetCaretBlinkTime'
 GetCaretBlinkTime
    ```
530

The following statement would achieve the same thing, but using an APL function called BLINK.
```

'BLINK' DNA 'U user32|GetCaretBlinkTime'
BLINK

```
530

\section*{Example 2}

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a single unsigned int argument, does not return a result and is declared as follows:
```

void SetCaretBlinkTime(UINT);

```

The following statements would provide access to this routine through an APL function of the same name:
```

ZNA 'user32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

```

\section*{Example 3}

The Windows function "MessageBox" displays a standard dialog box on the screen and awaits a response from the user. It takes 4 arguments. The first is the window handle for the window that owns the message box. This is declared as an unsigned int. The second and third arguments are both pointers to null-terminated strings containing the message to be displayed in the Message Box and the caption to be used in the window title bar. The 4th argument is an unsigned int that specifies the Message Box type. The result is an int which indicates which of the buttons in the message box the user has pressed. The function is declared as follows:
int MessageBox(HWND, LPCSTR, LPCSTR, UINT);
The following statements provide access to this routine through an APL function of the same name. Note that the 2 nd and 3 rd arguments are both coded as input pointers to type T null-terminated character arrays which ensures portability between Editions.
```

 ONA 'I user32|MessageBox* P <OT <OT U'
    ```

The following statement displays a Message Box with a stop sign icon together with 2 push buttons labelled OK and Cancel (this is specified by the value 19).
\[
\text { MessageBox O 'Message' 'Title' } 19
\]

The function works equally well in the Unicode Edition because the \(<0 \mathrm{~T}\) specification is portable.
\[
\text { MessageBox O 'To Mńvupa' 'O Títגoc' } 19
\]

Note that a simpler, portable (and safer) method for displaying a Message Box is to use Dyalog APL's primitive MsgBox object.

\section*{Example 4}

The Windows function "FindWindow" obtains the window handle of a window which has a given character string in its title bar. The function takes two arguments. The first is a pointer to a null-terminated character string that specifies the window's class name. However, if you are not interested in the class name, this argument should be a NULL pointer. The second is a pointer to a character string that specifies the title that identifies the window in question. This is an example of a case described above where two instances of the function must be defined to cater for the two different types of argument. However, in practice this function is most often used without specifying the class name. The function is declared as follows:

HWND FindWindow (LPCSTR, LPCSTR);

The following statement associates the APL function FW with the second variant of the FindWindow call, where the class name is specified as a NULL pointer. To indicate that APL is to pass the value of the NULL pointer, rather than its address, we need to code this argument as I4.
```

'FW' DNA 'P user32|FindWindow* I4 <OT'

```

To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":
```

 D<HNDL&FW O 'CLEAR WS - Dyalog APL/W'
 59245156

```

\section*{Example 5}

The Windows function "GetWindowText" retrieves the caption displayed in a window's title bar. It takes 3 arguments. The first is an unsigned int containing the window handle. The second is a pointer to a buffer to receive the caption as a nullterminated character string. This is an example of an output array. The third argument is an int which specifies the maximum number of characters to be copied into the output buffer. The function returns an int containing the actual number of characters copied into the buffer and is declared as follows:
```

int GetWindowText(HWND, LPSTR, int);

```

The following associates the "GetWindowText" DLL function with an APL function of the same name. Note that the second argument is coded as ">OT" indicating that it is a pointer to a character output array.
ZNA 'I user32|GetWindowText* P >OT I'

Now change the Session caption using )WSID:
```

)WSID MYWS

```
was CLEAR WS
Then retrieve the new caption (max length 255) using window handle HNDL from the previous example:


There are three points to note. Firstly, the number 255 is supplied as the second argument. This instructs APL to allocate a buffer large enough for a 255 -element character vector into which the DLL routine will write. Secondly, the result of the APL function is a nested vector of 2 elements. The first element is the result of the DLL function. The second element is the output character array.

Finally, notice that although we reserved space for 255 elements, the result reflects the length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument as an input/output array.
e.g.
```

 \squareNA 'I User32|GetWindowText* P =OT I'
]display GetWindowText HNDL (255\rho' ') 255
    ```


In this case, the second argument is coded as \(=0 \mathrm{~T}\), so when the function is called an array of the appropriate size must be supplied. This method uses more space in the workspace, although for small arrays (as in this case) the real impact of doing so is negligible.

\section*{Example 6}

The function "GetCharWidth" returns the width of each character in a given range Its first argument is a device context (handle). Its second and third arguments specify font positions (start and end). The third argument is the resulting integer vector that contains the character widths (this is an example of an output array). The function returns a Boolean value to indicate success or failure. The function is defined as follows. Note that this function is provided in the library: gdi32.dll.
```

BOOL GetCharWidth(HDC, UINT, UINT, int FAR*);

```

The following statements provide access to this routine through an APL function of the same name:
```

 \squareNA 'U4 gdi32|GetCharWidth* P U U >I[]'
 'P'DWC'Printer'
]display GetCharWidth ('P' DWG 'Handle') 65 67 3
 | |

```

Note: ' P ' DWG ' Handle ' returns a handle This is represented as a number. The number will be in the range ( \(0-2 * 32\) ] on a 32 -bit Version and \((0-2 * 64\) ] on a 64 -bit Version. These can be passed to a P type parameter. Older Versions used a 32-bit signed integer.

\section*{Example 7}

The following example from the supplied workspace: QUADNA. DWS illustrates several techniques which are important in advanced DNA programming. Function DI lVersion returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside APL's workspace. In general, the procedure for such use is:
1. Allocate global memory.
2. Lock the memory.
3. Copy any DLL input information from workspace into memory.
4. Call the DLL function.
5. Copy any DLL output information from memory to workspace.
6. Unlock the memory.
7. Free the memory.

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you allocate global system memory, you must free it after you have finished using it. If you continue to use global memory without freeing it, your system will gradually run out of resources. Similarly, if you lock memory (which you must do before using it), then you should unlock it before freeing it. Although on some versions of Windows, freeing the memory will include unlocking it, in the interests of good style, maintaining the symmetry is probably a good thing.
```

\nabla version<-DllVersion file;Alloc;Free;Lock;Unlock;Size
;Info;Value;Copy;size;hndl;addr;buff;ok
[1]
[2] 'Alloc'DNA'P kernel32|GlobalAlloc U4 U4'
[3] 'Free'DNA'P kernel32|GlobalFree P'
[4] 'Lock'DNA'P kernel32|GlobalLock P'
[5] 'Unlock'DNA'U4 kernel32|GlobalUnlock P'
[6]
[7]
>U4'
[8] 'Info'DNA'U4 version|GetFileVersionInfo*<0T U4 U4 P'
[9] 'Value'DNA'U4 version|VerQueryValue* P <OT >P >U4'
[10]
[11] 'Copy'DNA'dyalog64|MEMCPY >U4[] P P'
[12]
[13] :If xsize↔Size file 0 \& Size of info
[14] :AndIf xhndl\&Alloc O size \& Alloc memory
[15] :If xaddr\leftarrowLock hndl A Lock memory
[16] :If xInfo file O size addr \& Version info
[17] ok buff size\leftarrowValue addr'\' 0 0 a Version
value
[18] :If ok
[19] buff*Copy(size\div4)buff size ค Copy info
[20] version\leftarrow(2/2*16)тכ2\downarrowbuff A Split
version
[21] :EndIf
[22] :EndIf
[23] ok<Unlock hndl o Unlock
memory
[24] :EndIf
[25] ok<Free hndl A Free memory
[26] :EndIf
\nabla

```

Lines [2-11] associate APL function names with the DLL functions that will be used.
Lines [2-5] associate functions to administer global memory.
Lines [7-9] associate functions to extract version information from a DLL.
Line[11] associates Copy with MEMCPY function from dyalog64.dll.
Lines [13-26] call the DLL functions.
Line [13] requests the size of buffer required to receive version information for the DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:
On line [14], the :If clause is taken only if the global memory allocation is successful, in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.
A result is returned from the function only if all the calls are successful Otherwise, the calling environment will sustain a VALUE ERROR.

\section*{More Examples}
\begin{tabular}{|c|c|c|c|}
\hline DNA'I4 & advapi 32 & | RegCloseKey & \(P^{\prime}\) \\
\hline DNA'I4 & advapi 32 & |RegCreateKeyEx* & \(P<0 T\) U4 <0T U4 U4 P >P > \({ }^{\text {P }}\) \\
\hline DNA'I4 & advapi 32 & |RegEnumValue* & \(P\) U4 >0T =U4 =U4>U4>0T \\
\hline = U4' & & & \\
\hline DNA'I4 & advapi 32 & |RegOpenKey* & \(P<0 T>P^{\prime}\) \\
\hline DNA'I4 & advapi32 & |RegOpenKeyEx* & \(\mathrm{P}<0 \mathrm{~T}\) U4 U4 >P' \\
\hline DNA'I4 & advapi 32 & |RegQueryValueEx* & \(\mathrm{P}<0 \mathrm{~T}=\mathrm{U4}>\mathrm{U4}\) >0T =U4' \\
\hline DNA'I4 & advapi32 & |RegSetValueEx* & \(P<0 T=U 4\) U4 <OT U4' \\
\hline ONA'P & dyalog32 & | STRNCPY & P P P \({ }^{\prime}\) \\
\hline DNA'P & dyalog32 & | STRNCPYA & P P P \({ }^{\prime}\) \\
\hline DNA'P & dyalog32 & | STRNCPYW & P P P \({ }^{\prime}\) \\
\hline ONA'P & dyalog32 & | MEMCPY & P P P \({ }^{\prime}\) \\
\hline DNA'I4 & gdi 32 & |AddF ontResource* & <OT' \\
\hline DNA'I4 & gdi 32 & |BitBlt & P I4 I4 I4 I4 P I4 I4 U4' \\
\hline DNA'U4 & gdi 32 & |GetPixel & P I4 I4' \\
\hline ONA ' P & gdi 32 & |GetStockObject & I4' \\
\hline DNA'I4 & gdi 32 & |RemoveFontResource* & <OT' \\
\hline DNA'U4 & gdi 32 & |SetPixel & P I4 I4 U4' \\
\hline [NA' & glu32 & |gluPerspective & F8 F8 F8 F8' \\
\hline -NA'I4 & kernel32 & | CopyFile* & <OT <OT I4' \\
\hline DNA'P & kernel32 & |GetEnvironmentString & \\
\hline DNA'U4 & kernel 32 & |GetLastError' & \\
\hline DNA'U4 & kernel32 & |GetTempPath* & U4 >0T \({ }^{\prime}\) \\
\hline DNA'P & kernel32 & |GetProcessHeap' & \\
\hline DNA'I4 & kernel32 & |GlobalMemoryStatusEx & \(=\left\{\mathrm{U4}\right.\) U4 U8 U8 U8 U8 U8 U8 \({ }^{\prime}\) \\
\hline DNA'P & kernel32 & | HeapAlloc & P U4 P \({ }^{\text {P }}\) \\
\hline DNA'I4 & kernel32 & | HeapFree & P U4 \(\mathrm{P}^{\prime}\) \\
\hline DNA' & opengl32 & |glClearColor & F4 F4 F4 F4' \\
\hline [NA' & opengl32 & |glClearDepth & F8' \\
\hline [NA' & opengl32 & |glEnable & U4' \\
\hline [ NA \({ }^{\prime}\) & opengl32 & |glMatrixMode & U4' \\
\hline DNA'I4 & user32 & |ClientToScreen & \(\mathrm{P}=\{\mathrm{I} 4 \mathrm{I} 4\}^{\prime}\) \\
\hline DNA'P & user32 & |FindWindow* & <OT <OT' \\
\hline DNA'I4 & user32 & | ShowWindow & P I4 \({ }^{\text {' }}\) \\
\hline DNA'I2 & user32 & |GetAsyncKeyState & I4 \({ }^{\prime}\) \\
\hline - \(\mathrm{NA}^{\prime} \mathrm{P}\) & user32 & |GetDC & \(P^{\prime}\) \\
\hline DNA'I4 & User32 & |GetDialogBaseUnits' & \\
\hline DNA'P & user32 & |GetFocus' & \\
\hline DNA'U4 & user32 & |GetSysColor & I4 \({ }^{\prime}\) \\
\hline DNA'I4 & user32 & |GetSystemMetrics & I4' \\
\hline DNA' I 4 & user2 & | InvalidateRgn & P P I4' \\
\hline DNA'I4 & user32 & |MessageBox* & P <OT <0T U4' \\
\hline DNA' I 4 & user32 & |ReleaseDC & P \(\mathrm{P}^{\prime}\) \\
\hline DNA'P & user32 & | SendMessage* & P U4 P P \({ }^{\prime}\) \\
\hline ONA'P & user32 & |SetFocus & \(P^{\prime}\) \\
\hline DNA'I4 & user32 & |WinHelp* & \(P<0 T\) U4 \(P^{\prime}\) \\
\hline DNA' I4 & winnm & | sndPlaySound & <OT U4' \\
\hline
\end{tabular}

\section*{Native File Append: \\ \(\{R\}+X\) DNAPPEND \(Y\)}

This function appends the ravel of its left argument \(X\) to the end of the designated native file. X must be a simple homogeneous APL array. Y is a 1 - or 2 -element integer vector. \(\mathrm{Y}[1]\) is a negative integer that specifies the tie number of a native file. The optional second element \(Y[2]\) specifies the data type to which the array \(X\) is to be converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the record, which is also the start of the following one.

\section*{Unicode Edition}

Unless you specify the data type in \(Y\) [2], a character array will by default be written using type 80 .

If the data will not fit into the specified character width (bytes) पNAPPEND will fail with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320) in order to write Unicode characters whose code-point are in the range 25665535 and \(>65535\) respectively.

\section*{Example}
```

 n<'test'\squareNCREATE O
 'abc' Onappend n
 'та\beta\varepsiloń\rhova'Dnappend n
 DOMAIN ERROR
'та\beta\varepsiloń\rhova'\squareNAPPEND n
^
'taß\varepsiloń\rhova'\squareNAPPEND n 160
ZNREAD n 80 3 0
abc
ZNREAD n 160 7
Taß\varepsiloń\rhova

```

For compatibility with old files, you may specify that the data be converted to type 82 on output. The conversion (to पAV indices) will be determined by the local value of DAVU.

\section*{Name Classification:}
\(Y\) must be a simple character scalar, vector, matrix, or vector of vectors that specifies a list of names. \(R\) is a simple numeric vector containing one element per name in \(Y\).

Each element of \(R\) is the name class of the active referent to the object named in \(Y\).
If \(Y\) is simple, a name class may be:
\begin{tabular}{|l|l|}
\hline Name Class & Description \\
\hline-1 & invalid name \\
\hline 0 & unused name \\
\hline 1 & Label \\
\hline 2 & Variable \\
\hline 3 & Function \\
\hline 4 & Operator \\
\hline 9 & Object (GUI, namespace, COM, .Net) \\
\hline
\end{tabular}

If Y is nested a more precise analysis of name class is obtained whereby different types of functions (primitive, traditional defined functions, D-fns) are identified by a decimal extension. For example, defined functions have name class 3.1, D-fns have name class 3.2, and so forth. The complete set of name classification is as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline & Array (2) & Functions (3) & Operators (4) & Namespaces (9) \\
\hline n.1 & Variable & Traditional & Traditional & Created by DNS \\
\hline n.2 & Field & D-fns & D-ops & Instance \\
\hline n.3 & Property & \begin{tabular}{l} 
Derived \\
Primitive
\end{tabular} & & \\
\hline n.4 & & & & Class \\
\hline n.5 & & N/A & & Interface \\
\hline n.6 & \begin{tabular}{l} 
External \\
Shared
\end{tabular} & External & & External Class \\
\hline n.7 & & & & External Interface \\
\hline
\end{tabular}

In addition, values in \(R\) are negative to identify names of methods, properties and events that are inherited through the class hierarchy of the current class or instance.

\section*{Variable (Name-Class 2.1)}

Conventional APL arrays have name-class 2.1.
```

 NUM <88
 CHAR*'Hello World'
 ONC ^'NUM' 'CHAR'
 2 2
ONC 'NUM' 'CHAR'
2.1 2.1
'MYSPACE'DNS
MYSPACE.VAR+10
MYSPACE.DNC'VAR'
2
MYSPACE.\squareNCc'VAR'
2.1

```

\section*{Field (Name-Class 2.2)}

Fields defined by APL Classes have name-class 2.2.
```

:Class nctest
:Field Public pubFld
:Field pvtFld
r r NameClass x
:Access Public
r<\squareNC x
\nabla
:EndClass \rho nctest
ncinst-\squareNEW nctest

```

The name-class of a Field, whether Public or Private, viewed from a Method that is executing within the Instance Space, is 2.2.
ncinst.NameClass'pubFld' 'pvtFld'
2.22 .2

Note that an internal Method sees both Public and Private Fields in the Class Instance. However, when viewed from outside the instance, only public fields are visible
```

 ONC 'ncinst.pubFld' 'ncinst.pvtFld'
 -2.2 0

```

In this case, the name-class is negative to indicate that the name has been exposed by the class hierarchy, rather than existing in the associated namespace which APL has created to contain the instance. The same result is returned if DNC is executed inside this space:
```

 ncinst.\squareNC'pubFld' 'pvtFld'
    ```
-2.2 0

Note that the names of Fields are reported as being unused if the argument to पNC is simple.

\section*{ncinst. DNC 2 6p'pubFldpvtFld' \\ 00 \\ Property (Name-Class 2.3)}

Properties defined by APL Classes have name-class 2.3.
```

:Class nctest
:Field pvtFld+99
:Property pubProp
:Access Public
r r
r<pvtFld
\nabla
:EndProperty
:Property pvtProp
\nabla r\&get
r<pvtFld
\nabla
:EndProperty
r}\leftarrow\mathrm{ NameClass x
:Access Public
r<\squareNC x
\nabla
•••
:EndClass a nctest
ncinst-पNEW nctest

```

The name-class of a Property, whether Public or Private, viewed from a Method that is executing within the Instance Space, is 2.3.
```

 ncinst.NameClass'pubProp' 'pvtProp'
 2.3 2.3

```

Note that an internal Method sees both Public and Private Properties in the Class Instance. However, when viewed from outside the instance, only Public Properties are visible
```

 ONC 'ncinst.pubProp' 'ncinst.pvtProp'
 -2.3 0

```

In this case, the name-class is negative to indicate that the name has been exposed by the class hierarchy, rather than existing in the associated namespace which APL has created to contain the instance. The same result is returned if \(\square N C\) is executed inside this space:
```

 ncinst.\squareNC 'pubProp' 'pvtProp'
 -2.3 0

```

Note that the names of Properties are reported as being unused if the argument to \(\square \mathrm{NC}\) is simple.

00

\section*{External Properties (Name-Class 2.6)}

Properties exposed by external objects (.Net and COM and the APL GUI) have nameclass \({ }^{-2}\). 6.
```

 \squareUSING}\mp@subsup{}{}{\prime}\mathrm{ System'
 dt&\squareNEW DateTime (2006 1 1)
 dt.\squareNC 'Day' 'Month' 'Year'
 -2.6 -2.6-2.6
'ex' \squareWC 'OLEClient' 'Excel.Application'
ex.\squareNC 'Caption' 'Version' 'Visible'
-2.6 -2.6-2.6
'f'DWC'Form'
f.\squareNC'Caption' 'Size'
-2.6 -2.6

```

Note that the names of such Properties are reported as being unused if the argument to \(\square N C\) is simple.

00
```

f.\squareNC 2 7\rho'CaptionSize

```

\section*{Defined Functions (Name-Class 3.1)}

Traditional APL defined functions have name-class 3.1.
[1] \(\quad R \leftarrow(+/ X) \div \rho X\)
\(\nabla\)
AVG 1100
50.5

DNC'AVG'
3
[NCc'AVG'
3.1
'MYSPACE'DNS 'AVG' MYSPACE.AVG 2100
50.5

MYSPACE. \(\mathrm{DNC}^{\prime}\) AVG'
3
DNCc'MYSPACE.AVG'
3.1

Note that a function that is simply cloned from a defined function by assignment retains its name-class.

MEAN \(-A V G\)
DNC'AVG' 'MEAN'

\subsection*{3.13 .1}

Whereas, the name of a function that amalgamates a defined function with any other functions has the name-class of a Derived Function, i.e. 3.3.

VMEAN \(\leftarrow A V G \circ\), ZNC'AVG' 'VMEAN'
3.13 .3

\section*{D-Fns (Name-Class 3.2)}

D-Fns (Dynamic Functions) have name-class 3.2
\[
\begin{aligned}
& \operatorname{Avg\leftarrow \{ (+/\omega )\div \rho \omega \} } \\
& \text { ZNC'Avg' } \\
& \text { ZNCc'Avg' }
\end{aligned}
\]

3
3.2

\section*{Derived Functions (Name-Class 3.3)}

Derived Functions and functions created by naming a Primitive function have nameclass 3.3.

PLUS ++
SUM \(\leftarrow+\) /
CUM + PLUS \(\backslash\)
ZNC'PLUS' 'SUM' 'CUM'
3.33 .33 .3

ZNC 3 4م'PLUSSUM CUM '
333
Note that a function that is simply cloned from a defined function by assignment retains its name-class. Whereas, the name of a function that amalgamates a defined function with any other functions has the name-class of a Derived Function, i.e. 3.3.
```

[1] R\leftarrow(+/X)\div\rhoX

```
    \(\nabla\)

MEAN \(\leftarrow A V G\)
VMEAN \(-A V G \circ\),
ZNC'AVG' 'MEAN' 'VMEAN'

\subsection*{3.13 .13 .3}

\section*{External Functions (Name-Class 3.6)}

Methods exposed by the Dyalog APL GUI and COM and .NET objects have nameclass \({ }^{-3.6}\). Methods exposed by External Functions created using \(\square N A\) and \(\square S H\) all have name-class 3.6.
```

 'F'DWC'Form'
 F.DNC'GetTextSize' 'GetFocus'
 -3.6 -3.6
'EX'DWC'OLEClient' 'Excel.Application'
EX.DNC 'Wait' 'Save' 'Quit'
-3.6 -3.6 -3.6
ZUSING*'System'
dt-\squareNEW DateTime (2006 1 1)
dt.\squareNC 'AddDays' 'AddHours'
-3.6 -3.6

```
```

 'beep'DNA'user32|MessageBeep i'
 \squareNC'beep'
 3
3.6
'xutils'DSH''
)FNS
avx box dbr getenv hex ltom ltov
mtol ss vtol
ONC'hex' 'ss'
3.6 3.6

```

\section*{Operators (Name-Class 4.1)}

Traditional Defined Operators have name-class 4.1.
\[
\nabla F \text { ILTER } \nabla
\]
\[
\nabla \text { VEC } \leftarrow(P \text { FILTER)VEC } a \text { Select from VEC those elts .. }
\]
```

[1]
VEC\leftarrow(P`VEC)/VEC \& for which BOOL fn P is true.

```
\(\nabla\)

ZNC'FILTER'
4 DNCc'FILTER'
4.1

\section*{D-Ops (Name-Class 4.2}

D-Ops (Dynamic Operators) have name-class 4.2.
```

pred\leftarrow{DIO \ML<1 3 \& Partitioned reduction.
>\alpha\alpha/`"(\alpha/\imath\rho\alpha)\subset\omega
}

```
    2332 +pred 210
3121119
    DNC' \(^{\prime}\) pred'
4
    ■NCc'pred'
4.2

\section*{External Events (Name-Class 8.6)}

Events exposed by Dyalog APL GUI objects, COM and .NET objects have nameclass \({ }^{-8.6 .}\)
```

 f&DNEW'Form'('Caption' 'Dyalog GUI Form')
 f.\squareNC'Close' 'Configure' 'MouseDown'
 -8.6 -8.6 -8.6
xl*-DNEW'OLEClient'(c'ClassName'
'Excel.Application')
xl.DNL -8
NewWorkbook SheetActivate SheetBeforeDoubleClick ...
xl.DNC 'SheetActivate' 'SheetCalculate'
-8.6 -8.6
ZUSING\leftarrow'System.Windows.Forms,system.windows.forms.dll'
ZNC,c'Form'
9.6
Form.\NL -8
Activated BackgroundImageChanged BackColorChanged ...
Namespaces (Name-Class 9.1)

```

Plain namespaces created using [NS, or fixed from a : Name space script, have name-class 9.1.
```

 'MYSPACE' DNS ''
 ZNC'MYSPACE'
 9
ZNCc'MYSPACE'
9.1

```

Note however that a namespace created by cloning, where the right argument to DNS is a \(\quad\) OR of a namespace, retains the name-class of the original space.
```

 'CopyMYSPACE'DNS DOR 'MYSPACE'
 'CopyF'DNS DOR 'F'DWC'Form'
 ZNC'MYSPACE' 'F'
 9.1 9.2
ZNC'CopyMYSPACE' 'CopyF'
9.1 9.2

```

The Name-Class of .Net namespaces (visible through DUSING) is also 9.1
DUSING*''
ZNC 'System' 'System.IO'
9.19 .1

\section*{Instances (Name-Class 9.2)}

Instances of Classes created using DNEW, and GUI objects created using DWC all have name-class 9.2.
```

 MyInst-\squareNEW MyClass
 ONC'MyInst'
 9
\squareNCc'MyInst'
9.2
UrInst-DNEW DFIX ':Class' ':EndClass'
ZNC 'MyInst' 'UrInst'
9.2 9.2
'F'DWC 'Form'
'F.B' DWC 'Button'
ZNC 2 3p'F F.B'
9
ZNC'F' 'F.B'
9.2 9.2
F.\squareNC'B'
9
F.\squareNCc,'B'
9.2

```

Instances of COM Objects whether created using DWC or DNEW also have name-class 9.2.
```

 xl*पNEW'OLEClient'(c'ClassName'
    ```
'Excel.Application')
    'XL'DWC'OLEClient' 'Excel.Application'
    CNC'xl' 'XL'

\subsection*{9.29 .2}

The same is true of Instances of .Net Classes (Types) whether created using DNEW or . New.
```

 ZUSING*'System'
 dt*-पNEW DateTime (3^DTS)
 DT<DateTime.New 3^DTS
 DNC 'dt' 'DT'
    ```
9.29 .2

Note that if you remove the GUI component of a GUI object, using the Detach method, it reverts to a plain namespace.
```

F.Detach
DNCc,'F'

```
9.1

Correspondingly, if you attach a GUI component to a plain namespace using the monadic form of \(\square W C\), it morphs into a GUI object
F.IWC 'PropertySheet'

DNCc, 'F'
9.2

\section*{Classes (Name-Class 9.4)}

Classes created using the editor or FF IX have name-class 9.4.
```

)ED OMyClass
 :Class MyClass
\nabla r}\leftarrow\mathrm{ NameClass x
:Access Public Shared
r<\squareNC x
\nabla
:EndClass A MyClass
ZNC 'MyClass'
9
9.4
DFIX ':Class UrClass' ':EndClass'
\squareNC 'MyClass' 'UrClass'
9.4 9.4

```

Note that the name of the Class is visible to a Public Method in that Class, or an Instance of that Class.

9
MyClass.NameClass'MyClass'
MyClass.NameClassc'MyClass'
9.4

\section*{Interfaces (Name-Class 9.5)}
```

Interfaces, defined by :Interface ... : EndInterface clauses, have name-
class 9.5.
:Interface IGolfClub
:Property Club
r r*get
\nabla
\nabla set
\nabla
:EndProperty
\nabla Shank<Swing Params
\nabla
:EndInterface ค IGolfClub
ZNC 'IGolfClub'
9
ZNC c'IGolfClub'
9.5

```

\section*{External Classes (Name-Class 9.6)}

External Classes (Types) exposed by .Net have name-class 9.6.
ZUSING*'System' 'System.IO'
ZNC 'DateTime' 'File' 'DirectoryInfo'
9.69 .69 .6

Note that referencing a .Net class (type) with \(\square N C\), fixes the name of that class in the workspace and obviates the need for APL to repeat the task of searching for and loading the class when the name is next used.

\section*{External Interfaces (Name-Class 9.7)}

External Interfaces exposed by .Net have name-class 9.7.
```

 ZUSING&'System.Web.UI, system.web.dll'
 ZNC 'IPostBackDataHandler' 'IPostBackEventHandler'
 9.7 9.7

```

Note that referencing a .Net Interface with DNC , fixes the name of that Interface in the workspace and obviates the need for APL to repeat the task of searching for and loading the Interface when the name is next used.

\section*{Native File Create: \\ \(\{R\}+X\) DNCREATE \(Y\)}

This function creates a new file. Under Windows the file is opened in compatibility mode. The name of the new file is specified by the left argument \(X\) which must be a simple character vector or scalar containing a valid pathname for the file. \(Y\) is 0 or a negative integer value that specifies an (unused) tie number by which the file may subsequently be referred.

The shy result of \(\square\) NCREATE is the tie number of the new file.

\section*{Automatic Tie Number Allocation}

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an explicit result, the first (closest to zero) available tie number. This allows you to simplify code. For example:
from:
\[
\begin{aligned}
& \text { file } \mathrm{DNCREATE} \text { tie } \rho \text {... create file. }
\end{aligned}
\]
to:
no.

This function erases (deletes) a native file. \(Y\) is a negative integer tie number associated with a tied native file. X is a simple character vector or scalar containing the name of the same file and must be identical to the name used when it was opened by ZNCREATE or DNTIE.

The shy result of DNERASE is the tie number that the erased file had.

\section*{Example}
```

file Dnerase file Dntie 0

```

\section*{R-DNEW Y}

DNEW creates a new instance of the Class or .Net Type specified by Y .
Y must be a 1- or 2-item scalar or vector. The first item is a reference to a Class or to a .Net Type, or a character vector containing the name of a Dyalog GUI object. The second item, if specified, contains the argument to be supplied to the Class or Type Constructor.

The result \(R\) is a reference to a new instance of Class or Type \(Y\).
For further information, see Interface Guide.

\section*{Class Example}
```

:Class Animal
\nabla Name nm
:Access Public
:Implements Constructor
ODF nm
\nabla
:EndClass a Animal
Donkey*-DNEW Animal 'Eeyore'
Donkey
Eeyore

```

If CNEW is called with just a Class reference (i.e. without parameters for the Constructor), the default constructor will be called. A default constructor is defined by a niladic function with the :Implements Constructor attribute. For example, the Animal Class may be redefined as:
```

:Class Animal
\nabla NoName
:Access Public
:Implements Constructor
DDF 'Noname'
\nabla
\nabla Name nm
:Access Public
:Implements Constructor
\squareDF nm
\nabla
:EndClass A Animal
Horse<-DNEW Animal
Horse
Noname

```

\section*{.Net Examples}
```

 ZUSING*'System' 'System.Web.Mail,System.Web.dll'
 dt+\squareNEW DateTime (2006 1 1)
 msg*पNEW MailMessage
 ZNC 'dt' 'msg' 'DateTime' 'MailMessage'
 9.2 9.2 9.6 9.6

```

Note that .Net Types are accessed as follows.
If the name specified by the first item of \(Y\) would otherwise generate a VALUE ERROR, and DUSING has been set, APL attempts to load the Type specified by \(Y\) from the .Net assemblies (DLLs) specified in DUS ING. If successful, the name specified by Y is entered into the SYMBOL TABLE with a name-class of 9.6. Subsequent references to that symbol (in this case DateTime) are resolved directly and do not involve any assembly searching.
```

 F-DNEW c'Form'
 F- DNEW'Form'(('Caption' 'Hello')('Posn' (10 10)))
 [NEW'Form'(('Caption' 'Hello')('Posn' (10 10)))
 \#. [Form]

```
Name List:
\(R+\{X\} \square N L Y\)
\(Y\) must be a simple numeric scalar or vector containing one or more of the values for name-class. See also"Name Classification: " on page 506.
\(X\) is optional. If present, it must be a simple character scalar or vector. \(R\) is a list of the names of active objects whose name-class is included in \(Y\) in standard sorted order.

If any element of \(Y\) is negative, positive values in \(Y\) are treated as if they were negative, and \(R\) is a vector of character vectors. Otherwise, \(R\) is simple character matrix.

Furthermore, if पNL is being evaluated inside the namespace associated with a Class or an Instance of a Class, and any element of \(Y\) is negative, \(R\) includes the Public names exposed by the Base Class (if any) and all other Classes in the Class hierarchy.

If \(X\) is supplied, \(R\) contains only those names which begin with any character of \(X\). Standard sorted order is in Unicode point order for Unicode editions, and in the collation order of \(\square A V\) for Classic editions.

If an element of \(Y\) is an integer, the names of all of the corresponding sub-nameclasses are included in \(R\). For example, if \(Y\) contains the value 2, the names of all variables (name-class 2.1), fields (2.2), properties (2.3) and external or shared variables (2.6) are obtained. Otherwise, only the names of members of the corresponding sub-name-class are obtained.

\section*{Examples:}

DNL 23

\section*{A}

FAST
FIND
FOO
v
'AV' DNL 23
A
V
DNL -9
Animal Bird BirdBehaviour Coin Cylinder
DomesticParrot Eeyore FishBehaviour Nickel Parrot Penguin Polly Robin
[NL -9.3 ค Instances
Eeyore Nickel Polly Robin
QNL -9.4 ค Classes
Animal Bird Coin Cylinder DomesticParrot Parrot Penguin

पNL -9.5 ค Interfaces
BirdBehaviour FishBehaviour
QNL can also be used to explore Dyalog GUI Objects, .Net types and COM objects.

\section*{Dyalog GUI Objects}

ZNL may be used to obtain lists of the Methods, Properties and Events provided by Dyalog APL GUI Objects.
```

 'F' DWC 'Form'
 F.\squareNL -2 A Properties
 Accelerator AcceptFiles Active AlphaBlend AutoConf
Border BCol Caption ...
F.\squareNL - 3 ^ Methods
Animate ChooseFont Detach GetFocus GetTextSize
ShowSIP Wait
F.DNL -8 A Events
Close Create DragDrop Configure ContextMenu
DropFiles DropObjects Expose Help ...

```

\section*{.Net Classes (Types)}
-NL can be used to explore .Net types.
When a reference is made to an undefined name, and DUS ING is set, APL attempts to load the Type from the appropriate .Net Assemblies. If successful, the name is entered into the symbol table with name-class 9.6.
```

 ZUSING
 DateTime
 (System.DateTime)
ONL -9
DateTime
ZNC,c'DateTime'
9.6

```

The names of the Properties and Methods of a .Net Type may then be obtained using DNL.
```

 DateTime.DNL -2 ^ Properties
 MaxValue MinValue Now Today UtcNow
 DateTime.DNL -3 ^ Methods
 get_Now get_Today get_UtcNow op_Addition op_
Equality ...

```
In fact it is not necessary to make a separate reference first, because the expression
Type. \(\square N L\) (where Type is a .Net Type) is itself a reference to Type. So, (with
DUSING still set to 'System'):
    Array.DNL -3
    BinarySearch Clear Copy CreateInstance IndexOf
LastIndexOf Reverse Sort
    पNL -9
Array DateTime

Another use for \(\square \mathrm{NL}\) is to examine .Net enumerations. For example:
```

ZUSING*'System.Windows.Forms,system.windows.forms.dll'
FormBorderStyle.DNL -2
Fixed3D FixedDialog FixedSingle FixedToolWindow None
Sizable SizableToolWindow
FormBorderStyle.FixedDialog.value

```
\(\qquad\)
```

3
FormBorderStyle.({\omega,[1.5]ゅ"\omega,`c'.value___'}DNL -2)
Fixed3D 2
FixedDialog 3
FixedSingle 1
FixedToolWindow 5
None 0
Sizable 4
SizableToolWindow 6

```

\section*{COM Objects}

Once a reference to a COM object has been obtained, ONL may be used to obtain lists of its Methods, Properties and Events.
```

 xl-DNEW'OLEClient'(c'ClassName'
 'Excel.Application')
xl.DNL -2 ค Properties
_Default ActiveCell ActiveChart ActiveDialog
ActiveMenuBar ActivePrinter ActiveSheet ActiveWindow
xl.DNL -3 ^ Methods
Evaluate _FindFile _Run2 _Wait _WSFunction
A\overline{c}tivateMicrōsoftApp A\overline{d}CChartA\overline{A}utoFormat AddCustomList
Browse Calculate ...
\squareNL -9
xl

```

\section*{Native File Lock: \\ \(\{R\}+X\) DNLOCK \(Y\)}

This function assists the controlled update of shared native files by locking a range of bytes.

Locking enables controlled update of native files by co-operating users. A process requesting a lock on a region of a file will be blocked until that region becomes available. A write-lock is exclusive, whereas a read-lock is shared. In other words, any byte in a file may be in one of only three states:
- Unlocked
- Write-locked by exactly one process.
- Read-locked by any number of processes.
\(Y\) must be a simple integer scalar or vector containing 1, 2 or 3 items namely:
1. Tie number
2. Offset (from 0 ) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size
\(X\) must be a simple integer scalar or vector containing 1 or 2 items, namely:
1. Type: 0 : Unlock, \(1:\) Read lock, 2 :Write lock.
2. Timeout: Number of seconds to wait for lock before generating a TIMEOUT error. Defaults to indefinite wait.

The shy result \(R\) is Y . To unlock the file, this value should subsequently be supplied in the right argument to 0 DNLOCK.

\section*{Examples:}
```

2 [NLOCK -1
O DNLOCK -1
1 DNLOCK -1
2 DNLOCK``口NNUMS O DNLOCK``NNUMS
\rho write-lock whole file
1 ONLOCK -1 12 1 a read-lock byte 12.
1 [NLOCK -1 0 10 a read-lock first 10 bytes.
2 [NLOCK -1 20 \& write-lock from byte 20 onwards.
2 [NLOCK -1 10 2 \& write-lock 2 bytes from byte 10
O [NLOCK -1 12 1 \& remove lock from byte 12.

```

To lock the region immediately beyond the end of the file prior extending it:
```

 \square<region<2 [NLOCK -1, DNSIZE -1 ค write-lock from EOF.
 -1 1000
... DNAPPEND -1 A append bytes to file
... DNAPPEND -1 A append bytes to file
O DNLOCK region \rho release lock.

```

The left argument may have a second optional item that specifies a timeout value. If a lock has not been acquired within this number of seconds, the acquisition is abandoned and a TIMEOUT error reported.
```

2 10 [nlock -1 \& wait up to 10 seconds for lock.

```

\section*{Notes:}

There is no per-byte cost associated with region locking. It takes the same time to lock/unlock a region, irrespective of that region's size.

Different file servers implement locks in slightly different ways. For example on some systems, locks are advisory. This means that a write lock on a region precludes other locks intersecting that region, but doesn't stop reads or writes across the region. On the other hand, mandatory locks block both other locks and read/write operations. DNLOCK will just pass the server's functionality along to the APL programmer without trying to standardise it across different systems.

All locks on a file will be removed by DNUNTIE.
Blocked locking requests can be freed by a strong interrupt. Under Windows, this operation is performed from the Dyalog APL pop-up menu in the system tray.

\section*{Errors}

In this release, an attempt to unlock a region that contains bytes that have not been locked results in a DOMAIN ERROR.

A LIMIT ERROR results if the operating system lock daemon has insufficient resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a condition is detected, a DEADLOCK error (1008) will be reported.

\section*{Native File Names:}

\section*{\(R \leftarrow \square\) NNAMES}

This niladic function reports the names of all currently open native files. \(R\) is a character matrix. Each row contains the name of a tied native file padded if necessary with blanks. The names are identical to those that were given when opening the files with \(\mathbb{N} C R E A T E\) or \(\square N T I E\). The rows of the result are in the order in which the files were tied.

\section*{Native File Numbers:} R-ZNNUMS

This niladic function reports the tie numbers associated with all currently open native files. \(R\) is an integer vector of negative tie numbers. The elements of the result are in the order in which the files were tied.

This system function generates an event or invokes a method.
While APL is executing, events occur "naturally" as a result of user action or of communication with other applications. These events are added to the event queue as and when they occur, and are subsequently removed and processed one by one by —DQ. \(\quad\) NQ provides an "artificial" means to generate an event and is analogous to ZSIGNAL.

If the left argument \(X\) is omitted or is \(0, \square N Q\) adds the event specified by \(Y\) to the bottom of the event queue. The event will subsequently be processed by DDQ when it reaches the top of the queue.

If \(X\) is 1 , the event is actioned immediately by \(\square N Q\) itself and is processed in exactly the same way as it would be processed by DDQ . For example, if the event has a callback function attached, DNQ will invoke it directly. See "Dequeue Events: " on page 420 for further details.

Note that it is not possible for one thread to use 1 ZNQ to send an event to another thread.

If \(X\) is 2 and the name supplied is the name of an event, \(\square N Q\) performs the default processing for the event immediately, but does not invoke a callback function if there is one attached.

If \(X\) is 2 and the name supplied is the name of a (Dyalog APL) method, CNQ invokes the method. Its (shy) result is the result produced by the method.

If \(X\) is 3 , \(\square N Q\) invokes a method in an OLE Control. The (shy) result of \(\square N Q\) is the result produced by the method.

If \(X\) is \(4, \square N Q\) signals an event from an Active \(X C\) ntrol object to its host application. The (shy) result of \(\square N Q\) is the result returned by the host application and depends upon the syntax of the event. This case is only applicable to ActiveXControl objects.
\(Y\) is a nested vector containing an event message. The first two elements of \(Y\) are:
Y[1] Object name -a character vector
Y[2]
Event Type - a numeric scalar or character vector which specifies an event or method.
\(Y[1]\) must contain the name of an existing object. If not, \(\mathbb{Z N Q}\) terminates with a VALUE ERROR. If Y[2] specifies a standard event type, subsequent elements must conform to the structure defined for that event type. If not, ZNQ terminates with a SYNTAX ERROR. If Y[2] specifies a non-standard event type, Y[3] onwards (if present) may contain arbitrary information. Although any event type not listed herein may be used, numbers in the range 0-1000 are reserved for future extensions.

If \(\square N Q\) is used monadically, or with a left argument of 0 , its (shy) result is always an empty character vector. If a left argument of 1 is specified, \(\square N Q\) returns \(Y\) unchanged or a modified \(Y\) if the callback function returns its modified argument as a result.

If the left argument is \(2, \square N Q\) returns either the value 1 or a value that is appropriate.

\section*{Examples}

A Send a keystroke ("A") to an Edit Field UNQ 'TEST.ED' 'KeyPress' 'A'

A Iconify all top-level Forms
\{ \(\mathrm{QNQ} \omega\) 'StateChange' 1\}''Form'DWN'.'
A Set the focus to a particular field DNQ 'TEST.ED3' 40
a Throw a new page on a printer 1 [NQ 'PR1' 'NewPage'

ค Terminate \(\overline{D D Q}\) under program control
'TEST'DWC 'Form' ... ('Event' 1001 1)
DOQ 'TEST'
\(\ddot{\mathrm{O}} \mathrm{N} \dot{Q}\) 'TEST' 1001 ค From a callback
a Call GetItemState method for a TreeView 'F.TV'
+2 [NQ'F.TV' 'GetItemState' 6
96
+2 ZNQ'.' 'GetEnvironment' 'Dyalog'
\(\mathrm{c}: \backslash Z \backslash 2 \backslash d y a \log 82\)

\section*{Nested Representation: R-ZNR Y}
\(Y\) must be a simple character scalar or vector which represents the name of a function or a defined operator.

If \(Y\) is a name of a defined function or defined operator, \(R\) is a vector of text vectors. The first element of \(R\) contains the text of the function or operator header. Subsequent elements contain lines of the function or operator. Elements of \(R\) contain no unnecessary blanks, except for leading indentation of control structures and the blanks which precede comments.

If Y is the name of a variable, a locked function or operator, an external function or a namespace, or is undefined, \(R\) is an empty vector.

\section*{Example}
\(\nabla R+M E A N \quad X\)
ค Average
[1]
\(R \leftarrow(+/ X) \div \rho X\)
\(\nabla\)
+F-DNR'MEAN'
\(R \leftarrow\) MEAN \(X \quad\) QAverage \(R \leftarrow(+/ X) \div \rho X\)
pF
2
]display F

The definition of CNR has been extended to names assigned to functions by specification ( \(\leftarrow\) ), and to local names of functions used as operands to defined operators. In these cases, the result of \(\square N R\) is identical to that of \(\square C R\) except that the representation of defined functions and operators is as described above.

\section*{Example}


\section*{Native File Read:}

\section*{R+GNREAD Y}

This monadic function reads data from a native file. \(Y\) is a 3- or 4-element integer vector whose elements are as follows:
[1] negative tie number,
[2] conversion code (see below),
[3] count,
[4] start byte, counting from 0 .
\(\mathrm{Y}[2]\) specifies conversion to an APL internal form as follows. Note that the internal formats for character arrays differ between the Unicode and Classic Editions.

Table 14: Unicode Edition : Conversion Codes
\begin{tabular}{|l|l|l|l|}
\hline Value & Number of bytes read & Result Type & Result shape \\
\hline 11 & count & 1 bit Boolean & \(8 \times\) count \\
\hline 80 & count & 8 bits character & count \\
\hline \(82^{1}\) & count & 8 bits character & count \\
\hline 83 & count & 8 bits integer & count \\
\hline 160 & \(2 \times\) count & 16 -bits character & count \\
\hline 163 & \(2 \times\) count & 16 bits integer & count \\
\hline 320 & \(4 \times\) count & 32 -bits character & count \\
\hline 323 & \(4 \times\) count & 32 bits integer & count \\
\hline 645 & \(8 \times\) count & 64 bits floating & count \\
\hline
\end{tabular}

Table 15: Classic Edition : Conversion Codes
\begin{tabular}{|l|l|l|l|}
\hline Value & Number of bytes read & Result Type & Result shape \\
\hline 11 & count & 1 bit Boolean & \(8 \times\) count \\
\hline 82 & count & 8 bits character & count \\
\hline 83 & count & 8 bits integer & count \\
\hline 163 & \(2 \times\) count & 16 bits integer & count \\
\hline 323 & \(4 \times\) count & 32 bits integer & count \\
\hline 645 & \(8 \times\) count & 64 bits floating & count \\
\hline
\end{tabular}

Note that types 80, \(\mathbf{1 6 0}\) and \(\mathbf{3 2 0}\) and \(\mathbf{8 3}\) and \(\mathbf{1 6 3}\) are exclusive to Dyalog APL.
If Y [4] is omitted, data is read starting from the current position in the file (initially, \(0)\).

\section*{Example}
\[
\begin{aligned}
& \text { DATA- पNREAD -1 } 160 \text { ( } 0.5 \times \square \text { NSIZE -1) } 0 \text { ค Unicode }
\end{aligned}
\]
\({ }^{1}\) Conversion code 82 is permitted in the Unicode Edition for compatibility and causes 1-byte data on file to be translated (according to पNXLATE) fromDAV indices into normal (Unicode) characters of type 80, 160 or 320.

\section*{Native File Rename: \(\quad\{R\} \leftarrow X\) INRENAME \(Y\)}

ZNRENAME is used to rename a native file.
\(Y\) is a negative integer tie number associated with a tied native file. \(X\) is a simple character vector or scalar containing a valid (and unused) file name.

The shy result of पNRENAME is the tie number of the renamed file.

\section*{Native File Replace: \(\{R\} \leftarrow X\) INREPLACE \(Y\)}

CNREPLACE is used to write data to a native file, replacing data which is already there.

X must be a simple homogeneous APL array containing the data to be written.
\(Y\) is a 2- or 3-element integer vector whose elements are as follows:
[1] negative tie number,
[2] start byte, counting from 0 , at which the data is to be written,
[3] conversion code (optional).
See "Native File Read: " on page 529 for a list of valid conversion codes.
The shy result is the position within the file of the end of the record, or, equivalently, the start of the following one. Used, for example, in:
```

A Replace sequentially from indx.
{\alpha DNREPLACE tie \omega}/vec,indx

```

\section*{Unicode Edition}

Unless you specify the data type in Y [2], a character array will by default be written using type 80. .

If the data will not fit into the specified character width (bytes) पNREPLACE will fail with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320 ) in order to write Unicode characters whose code-point are in the range 25665535 and \(>65535\) respectively.

\section*{Example}
```

 n<'test'\squareNTIE O & See "Example" on page 505
 GNREAD n 80 3 0
 abc
ZNREAD n 160 7
тaß\varepsiloń\rhova
\square<'\varepsilon\sigmatıatópıo'पNREPLACE n 3
DOMAIN ERROR
\square<'\varepsilon\sigmaтוатó\rhoıo'पNREPLACE n 3
^
\square<'\varepsilon\sigmatıató\rhoıo'पNREPLACE n 3 160
23
GNREAD n 80 3 0
abc
ZNREAD n 160 10
\varepsilon\sigmaтוато́\rhoıо

```

For compatibility with old files, you may specify that the data be converted to type 82 on output. The conversion (to पAV indices) will be determined by the local value of DAVU.

\section*{Native File Resize: \\ \{R\}-X DNRESIZE Y}

This function changes the size of a native file.
\(Y\) is a negative integer tie number associated with a tied native file.
\(X\) is a single integer value that specifies the new size of the file in bytes. If \(X\) is smaller than the current file size, the file is truncated. If \(X\) is larger than the current file size, the file is extended and the value of additional bytes is undefined.

The shy result of पNRESIZE is the tie number of the resized file.

If specified, X must be a simple character scalar or vector identifying the name of a namespace.
\(Y\) is either a character array which represents a list of names of objects to be copied into the namespace, or is an array produced by the DOR of a namespace.

In the first case, Y must be a simple character scalar, vector, matrix or a nested vector of character vectors identifying zero or more workspace objects to be copied into the namespace \(X\). The identifiers in \(X\) and \(Y\) may be simple names or compound names separated by '. ' and including the names of the special namespaces ' \#', '\#\#' and ' ISE'.

The namespace \(X\) is created if it doesn't already exist. If the name is already in use for an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.
The objects identified in the list \(Y\) are copied into the namespace \(X\).
If \(X\) is specified, the result \(R\) is the full name (starting with \# . or DSE .) of the namespace X . If X is omitted, the result R is a namespace reference, or \(r e f\), to an unnamed namespace.

\section*{Examples}
```

 +'X'DNS'' & Create namespace X.
 \#.X
r'X'\squareNS'VEC' 'UTIL.DISP'\rho Copy VEC and DISP to X.
\#.X
)CS X \& Change to namespace X.
\#.X
F'Y'DNS'\#.MAT' '\#\#.VEC' a Create \#.X.Y \© in
\#.X.Y
r'\#.UTIL'DNS'Y.MAT' a Copy MAT from Y to UTIL
\#.UTIL.
\#.UTIL
\vdash'\#'DNS'Y' A Copy namespace Y to root.

 r''DNS'#.MAT' & Copy MAT to currentspace.
 \#.X
r''ONS'' \& Display current space.
\#.X
\vdash'Z'DNS DOR'Y' A Create nspace from DOR.
\#.X.Z
NONAME*\squareNS ''
NONAME
\#.[Namespace]
DATA\&DNS*3\rhoc'' \& Create 3-element vector of
a distinct unnamed nspaces
DATA
\#.[Namespace] \#.[Namespace] \#.[Namespace]

```

The second case is where \(Y\) is the \(\square O R\) of a namespace.
If \(Y\) is the DOR of a GUI object, \#. \(Z\) must be a valid parent for the GUI object represented by Y , or the operation will fail with a DOMAIN ERROR.

Otherwise, the result of the operation depends upon the existence of \(Z\).
- If \(Z\) does not currently exist (name class is 0 ), \(Z\) is created as a complete copy (clone) of the original namespace represented by \(Y\). If \(Y\) is the \(\square O R\) of a GUI object or of a namespace containing GUI objects, the corresponding GUI components of \(Y\) will be instantiated in \(Z\).
- If \(Z\) is the name of an existing namespace (name class 9), the contents of \(Y\), including any GUI components, are merged into \(Z\). Any items in \(Z\) with corresponding names in \(Y\) (names with the same path in both \(Y\) and \(Z\) ) will be replaced by the names in \(Y\), unless they have a conflicting name class in which case the existing items in \(Z\) will remain unchanged. However, all GUI spaces in \(Z\) will be stripped of their GUI components prior to the merge operation.

\section*{Namespace Indicator:}

R- \(\square\) NS I
\(R\) is a nested vector of character vectors containing the names of the spaces from which functions in the state indicator were called ( \(\rho \square N S I \leftrightarrow \rho \square R S I \leftrightarrow \rho \square S I\) ).

ORSI and DNSI are identical except that DRSI returns refs to the spaces whereas DNSI returns their names. Put another way: \(\square N S I \leftrightarrow \Phi \times\)

Note that पNS I contains the names of spaces from which functions were called not those in which they are currently running.

\section*{Example}
\(x \mathrm{xx} \quad \mathrm{yy}\)
ZVR 'yy.foo'
\(\nabla r+f 00\)
[1] \(r\) - पSE.goo
\(\nabla\)
CVR'ISE.goo'
\(\nabla \mathrm{r}+\mathrm{goo}\)
[1] \(r+\) ПSI,[1.5]DNSI
\(\nabla\)
)CS \(x x\)
\#.xx
calling↔\#.yy.foo
]display calling


\section*{Native File Size:}

\section*{R- \(\quad\) NSIZE \(Y\)}

This reports the size of a native file.
\(Y\) is a negative integer tie number associated with a tied native file. The result \(R\) is the size of the file in bytes.

\section*{Native File Tie: \\ \(\{R\}+X\) DNTIE Y}

ZNTIE opens a native file.
\(X\) is a simple character vector or scalar containing a valid pathname for an existing native file.

Y is a 1-or 2-element vector. \(\mathrm{Y}[1]\) is a negative integer value that specifies an (unused) tie number by which the file may subsequently be referred. Y [2] is optional and specifies the mode in which the file is to be opened. This is an integer value calculated as the sum of 2 codes. The first code refers to the type of access needed from users who have already tied the native file. The second code refers to the type of access you wish to grant to users who subsequently try to open the file while you have it open.
\begin{tabular}{|l|l|l|l|}
\hline Needed from existing users & \multicolumn{2}{l|}{ Granted to subsequent users } \\
\hline 0 & read access & 0 & compatibility mode \\
\hline 1 & write access & 16 & no access (exclusive) \\
\hline 2 & read and write access & 32 & read access \\
\hline & & 48 & write access \\
\hline & & 64 & read and write access \\
\hline
\end{tabular}

On Unix systems, the first code (16|mode) is passed to the open (2) call as the access parameter. See include file fentl. h for details.

\section*{Automatic Tie Number Allocation}

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an explicit result, the first (closest to zero) available tie number. This allows you to simplify code. For example:
from:
\[
\begin{array}{ll}
\text { tie }-1+1 / 0, \text { DNNUMS } & \text { ค With next available number, } \\
\text { file DNTIE tie } & \text { Я } \ldots \text { tie file. }
\end{array}
\]
to:
\[
\text { tie } \leftarrow \text { file } \mathrm{CNTIE} 0 \quad \text { O Tie with first available no. }
\]

\section*{Example}
```

ntie\leftarrow{ \& tie file and return tie no.
\alpha<2+64 \rho default all access.
\omega Ontie 0 \alpha
}

```
\(R+\square N U L L\)
This is a reference to a null item, such as may be returned across the COM interface to represent a null value. An example might be the value of an empty cell in a spreadsheet.

पNULL may be used in any context that accepts a namespace reference, in particular:
- As the argument to a defined function
- As an item of an array.
- As the argument to those primitive functions that take character data arguments, for example: \(=, \neq \equiv, \not \equiv,, \rho, \supset, \subset\)

\section*{Example}
'EX'DWC'OLEClient' 'Excel.Application'
WB \(\leftarrow E X\). Workbooks.Open 'simple.xls'
(WB.Sheets.Item 1).UsedRange.Value2
[Null] [Null] [Null] [Null] [Null]
[Null]
[Null] Year [Null] [Null] 2001 [Null] [Null] 2002 [Null]
[Null]
[Null] 76
[Null] [Null]
Costs
[Nul]
[Null] [Null]
Margin
[Null] 60 [Null] 16
120
[Null]
100
[Null] 20
[Null] 150
[Null] 110
[Null]

To determine which of the cells are filled, you can compare the array with DNULL.

00000
01000
\(\begin{array}{lllll}0 & 1 & 1 & 1\end{array}\)
00000
\(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\)
00000
\(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\)
00000
\(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\)

\section*{Native File Untie: \{R\}-ZNUNTIE Y}

This closes one or more native files. \(Y\) is a scalar or vector of negative integer tie numbers. The files associated with elements of Y are closed. Native file untie with a zero length argument (ZNUNTIE \(\theta\) ) flushes all file buffers to disk - see "File Untie: " on page 465 for more explanation.

The shy result of DNUNTIE is a vector of tie numbers of the files actually untied.

\section*{Native File Translate: \(\quad\{R\} \leftarrow\{X\} \square N X L A T E \quad Y\)}

This associates a character translation vector with a native file or, if \(Y\) is 0 , with the use by DDR.

A translate vector is a 256 -element vector of integers from 0-255. Each element maps the corresponding \(\square A V\) position onto an ANSI character code.

For example, to map \(\square\) AV [ \(17+\square I O]\) onto ANSI 'a' (code 97), element 17 of the translate vector is set to 97 .

DNXLATE is a non-Unicode (Classic Edition) feature and is retained in the Unicode Edition only for compatibility.
\(Y\) is either a negative integer tie number associated with a tied native file or 0 . If \(Y\) is negative, monadic DNXLATE returns the current translation vector associated with the corresponding native file. If specified, the left argument X is a 256 -element vector of integers that specifies a new translate vector. In this case, the old translate vector is returned as a shy result. If \(Y\) is 0 , it refers to the translate vector used by \(\bar{D} R\) to convert to and from character data.

The system treats a translate vector with value ( 2256 ) -DIO as meaning no translation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at पNTIE or पNCREATE time, maps \(\square\) AV characters to their corresponding ANSI positions and is derived from the mapping defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.

\section*{Unicode Edition}

ZNXLATE is relevant in the Unicode Edition only to process Native Files that contain characters expressed as indices into \(\square \mathrm{AV}\), such as files written by the Classic Edition.

In the Unicode Edition, when reading data from a Native File using conversion code 82 , incoming bytes are translated first to DAV indices using the translation table specified by DNXLATE, and then to type 80,160 or 320 using DAVU. When writing data to a Native File using conversion code 82 , characters are converted using these two translation tables in reverse.

\section*{Sign Off APL:}

\section*{DOFF}

This niladic system function terminates the APL session, returning to the shell command level. The active workspace does not replace the last continuation workspace.

Although DOFF is niladic, you may specify an optional integer I to the right of the system function which will be reported to the Operating System as the exit code. If I is an expression generating an integer, you should put the expression in parentheses. I must be in the range \(0 . .255\), but note that on UNIX processes use values greater than 127 to indicate the signal number which was used to terminate a process, and that currently APL itself generates values \(0 . .8\); this list may be extended in future.

\section*{Variant: \\ \(\{R\}+\{X\}(f\) DOPT B)Y}

COPT is synonymous with the Variant Operator symbol 1 and is the only form available in the Classic Edition.

See "Variant:" on page 346.

\section*{Object Representation:}

\section*{R-DOR Y}

DOR converts a function, operator or namespace to a special form, described as its object representation, that may be assigned to a variable and/or stored on a component file. Classes and Instances are however outside the domain of पOR.

Taking the DOR of a function or operator is an extremely fast operation as it simply changes the type information in the object's header, leaving its internal structure unaltered. Converting the object representation back to an executable function or operator using \(\overline{\mathrm{F}} \mathrm{X}\) is also very fast. DOR is therefore the recommended form for storing functions and operators on component files and is significantly faster than using ICR, IVR or DNR.

However, the saved results of \(\square O R\) which were produced on a different hardware platform or using an older Version of Dyalog APL may require a significant amount of processing when re-constituted using DFX. For optimum performance, it is strongly recommended that you save DORs using the same Version of Dyalog APL and on the same hardware platform that you will use to \(\overline{\mathrm{F}} \mathrm{X}\) them.

DOR may also be used to convert a namespace (either a plain namespace or a named GUI object created by ZWC ) into a form that can be stored in a variable or on a component file. The namespace may be reconstructed using DNS or पWC with its original name or with a new one. DOR may therefore be used to clone a namespace or GUI object.
\(Y\) must be a simple character scalar or vector which contains the name of an APL object.

If \(Y\) is the name of a variable, the result \(R\) is its value. In this case, \(R+\square O R \quad Y\) is identical to \(R \leftarrow \Phi Y\).

Otherwise, \(R\) is a special form of the name \(Y\), re-classified as a variable. The rank of \(R\) is \(0(R\) is scalar), and the depth of \(R\) is 1 . These unique characteristics distinguish the result of \(\square O R\) from any other object. The type of \(R(\in R)\) is itself. Note that although \(R\) is scalar, it may not be index assigned to an element of an array unless it is enclosed.

If \(Y\) is the name of a function or operator, \(R\) is in the domain of the monadic functions Depth ( \(\equiv\) ), Disclose (כ), Enclose ( (c), Rotate ( \(\phi\) ), Transpose ( \(\phi\) ), Indexing ([ ]), Format \((\Phi)\), Identity ( + ), Shape ( \(\rho\) ), Type ( \(\epsilon\) ) and Unique ( \((\cup)\), of the dyadic functions Assignment ( \(\leftarrow\) ), Without ( \(\sim\) ), Index Of ( \(\imath\) ), Intersection ( \((\mathrm{n})\), Match ( \(\equiv\) ), Membership ( \(\epsilon\) ), Not Match \((\neq)\) and Union ( \(\cup\) ), and of the monadic system functions Canonical Representation (DCR), Cross-Reference (TREFS), Fix (DFX), Format (DFMT), Nested Representation ([NR) and Vector Representation (IVR).

Nested arrays which include the object representations of functions and operators are in the domain of many mixed functions which do not use the values of items of the arrays.

Note that a \(\quad\) OR object can be transmitted through an 'APL-style' TCP socket. This technique may be used to transfer objects including namespaces between APL sessions.

The object representation forms of namespaces produced by DOR may not be used as arguments to any primitive functions. The only operations permitted for such objects (or arrays containing such objects) are DEX, DFAPPEND, DFREPLACE, DNS, and DWC.

\section*{Example}
\[
F \leftarrow \square O R \quad \square F X ' R \leftarrow F O O^{\prime} \quad \text { ' } R \leftarrow 10^{\prime}
\]
pF
p \(\rho F\)
0
\(\equiv\) F
1
\(\mathrm{F} \equiv \epsilon \mathrm{F}\)
1
The display of the \(\bar{O}\) form of a function or operator is a listing of the function or operator. If the \(\bar{O} O R\) form of a function or operator has been enclosed, then the result will display as the operator name preceded by the symbol \(\nabla\). It is permitted to apply ZOR to a locked function or operator. In this instance the result will display as for the enclosed form.

\section*{Examples}
\begin{tabular}{|c|c|}
\hline \multirow{4}{*}{[1]} & F \\
\hline & \(\nabla \mathrm{R} \leftarrow \mathrm{FOO}\) \\
\hline & \(\mathrm{R}+10\) \\
\hline & \(\nabla\) \\
\hline & cF \\
\hline VFOO & \\
\hline
\end{tabular}
    DLOCK \({ }^{\prime}\) FOO '
    —OR'FOO'
FFOO
    \(A \leftarrow 25\)
    \(A[3] \leftarrow c F\)
    A
12 VFOO 45

For the DOR forms of two functions or operators to be considered identical, their unlocked display forms must be the same, they must either both be locked or unlocked, and any monitors, trace and stop vectors must be the same.

\section*{Example}
```

F<COR DFX 'R\&A PLUS B' 'R\&A+B'

```
    \(\mathrm{F}=\square \mathrm{OR}\) 'PLUS'
1
    1 DSTOP 'PLUS'
    \(\mathrm{F} \equiv \square \mathrm{OR}\) 'PLUS'
0

\section*{Namespace Examples}

The following example sets up a namespace called UTILS, copies into it the contents of the UTIL workspace, then writes it to a component file:
) CLEAR
clear ws
)NS UTILS
\#.UTILS
)CS UTILS
\#.UTILS
)COPY UTIL

)CS
\#
'ORTEST' DFCREATE 1
(DOR'UTILS')DFAPPEND 1
The namespace can be restored with \(\quad \mathrm{NS}\), using either the original name or a new one:
) CLEAR
clear ws
'UTILS' DNS DFREAD 1
\#.UTILS
) CLEAR
clear ws
'NEWUTILS' DNS DFREAD 11
\#.NEWUTILS
This example illustrates how DOR can be used to clone a GUI object; in this case a Group containing some Button objects. Note that IWC will accept only a DOR object as its argument (or preceded by the "Type" keyword). You may not specify any other properties in the same DWC statement, but you must instead use IWS to reset them afterwards.
```

'F'DWC'Form'
'F.G1' DWC 'Group' '\&One' (10 10)(80 30)
'F.G1.B2'DWC'Button' '\&Blue' (40 10)('Style' 'Radio')
'F.G1.B3'DWC'Button' '\&Green' (60 10)('Style' 'Radio')
'F.G1.B1'DWC'Button' '\&Red' (20 10)('Style' 'Radio')
'F.G2' OWC DOR 'F.G1'
'F.G2' IWS ('Caption' 'Two')('Posn' 10 60)

```

Note too that \(\square W C\) and \(\square N S\) may be used interchangeably to rebuild pure namespaces or GUI namespaces from a \(\square O R\) object. You may therefore use DNS to rebuild a Form or use IWC to rebuild a pure namespace that has no GUI components.

\section*{DPATH}
—PATH is a simple character vector representing a blank-separated list of namespaces. It is approximately analogous to the PATH variable in Windows or UNIX

The DPATH variable can be used to identify a namespace in which commonly used utility functions reside. Functions or operators (NOT variables) which are copied into this namespace and exported (see "Export Object:" on page 429) can then be used directly from anywhere in the workspace without giving their full path names.

\section*{Example}

To make the DISPLAY function available directly from within any namespace.
```

\rho Create and reference utility namespace.
\squarePATH<'Dse.util'Dns''
^ Copy DISPLAY function from UTIL into it.
'DISPLAY'Dse.util.Dcy'UTIL'
\rho (Remember to save the session to file).

```

In detail, DPATH works as follows:
When a reference to a name cannot be found in the current namespace, the system searches for it from left to right in the list of namespaces indicated by DPATH. In each namespace, if the name references a defined function (or operator) and the export type of that function is non-zero (see "Export Object:" on page 429) , then it is used to satisfy the reference. If the search exhausts all the namespaces in DPATH without finding a qualifying reference, the system issues a VALUE ERROR in the normal manner.

The special character \(\uparrow\) stands for the list of namespace ancestors:
```


\#\#.\#\# \#\#.\#\#.\#\# ...

```

In other words, the search is conducted upwards through enclosing namespaces, emulating the static scope rule inherent in modern block-structured languages.

Note that the DPATH mechanism is used ONLY if the function reference cannot be satisfied in the current namespace. This is analogous to the case when the Windows or UNIX PATH variable begins with a ' . ' .
```

Examples
DPATH
Search in ...

1. 'Dse.util'
Current space, then
Dse.util,
then
VALUE ERROR
2. ' }\uparrow\mathrm{ '
Current space
Parent space: \#\#
Parent's parent space: \#\#.\#\#
...
Root: \# (or Dse if current space
was inside पse)
VALUE ERROR
3. 'util \uparrow \se.util' Current space
util (relative to current space)
Parent space: \#\#
...
Root: \# or पse
Dse.util
VALUE ERROR
```

Note that IPATH is a session variable. This means that it is workspace-wide and survives ) LOAD and ) CLEAR. It can of course, be localised by a defined function or operator.

\section*{Program Function Key: R \(+\{X\}\) DPFKEY \(Y\)}

DPFKEY is a system function that sets or queries the programmable function keys. DPFKEY associates a sequence of keystrokes with a function key. When the user subsequently presses the key, it is as if he had typed the associated keystrokes one by one.
\(Y\) is an integer scalar in the range \(0-255\) specifying a programmable function key. If X is omitted the result R is the current setting of the key. If the key has not been defined previously, the result is an empty character vector.

If \(X\) is specified it is a simple or nested character vector defining the new setting of the key. The value of \(X\) is returned in the result \(R\).

The elements of \(X\) are either character scalars or 2-element character vectors which specify Input Translate Table codes.

Programmable function keys are recognised in any of the three types of window (SESSION, EDIT and TRACE) provided by the Dyalog APL development environment. ZSR operates with the 'raw' function keys and ignores programmed settings.

Note that key definitions can reference other function keys.
The size of the buffer associated with पPFKEY is specified by the pfkey_size parameter.

\section*{Examples}
```

 (')FNS',c'ER') DPFKEY 1
)FNS ER
]display DPFKEY 1
i->-------------
(')VARS',c'ER') पPFKEY 2
)VARS ER
'F1' 'F2' [PFKEY 3 a Does)FNS and)VARS
F1 F2

```

\section*{Print Precision:}

\section*{DPP}

DPP is the number of significant digits in the display of numeric output.
DPP may be assigned any integer value in the range 1 to 17 . The value in a clear workspace is 10 . Note that in all Versions of Dyalog APL prior to Version 11.0, the maximum value for DPP was 16 .

DPP is used to format numbers displayed directly. It is an implicit argument of monadic function Format ( \(\Phi\) ), monadic \(\overline{\mathrm{CFMT}}\) and for display of numbers via \(\square\) and \(\bar{\square}\) output. DPP is ignored for the display of integers.

\section*{Examples:}
```

 \squarePP}\leftarrow1
 \div3 6
 0.3333333333 0.1666666667
\squarePP}\leftarrow
\div36
0.333 0.167

```

If पPP is set to its maximum value of 17 , floating-point numbers may be converted between binary and character representation without loss of precision. In particular, if —PP is 17 and पCT is 0 (to ensure exact comparison), for any floating-point number \(N\) the expression \(N=\Phi \Phi N\) is true. Note however that denormal numbers are an exception to this rule.

Numbers, very close to zero, in the range \(2.2250738585072009 E^{-} 308\) to \(4.9406564584124654 \mathrm{E}^{-} 324\) are called denormal numbers.

Such numbers can occur as the result of calculations and are displayed correctly. However, denormals cannot be specified as literals and are converted to zero on input.

Numbers below the lower end of this range ( \(4.94 \mathrm{E}^{-} 324\) ) are indistinguishable from zero in IEEE double floating point format.

\section*{Profile Application: \\ \(R+\square P R O F I L E \quad Y\)}
—PROF ILE facilitates the profiling of either CPU consumption or elapsed time for a workspace. It does so by retaining time measurements collected for APL functions/operators and function/operator lines. पPROF ILE is used to both control the state of profiling and retrieve the collected profiling data.
\(Y\) specifies the action to perform and any options for that action, if applicable. \(Y\) is case-insensitive.
\begin{tabular}{|c|c|}
\hline Use & Description \\
\hline state- \({ }^{\text {P }}\) PROFILE 'start' \(\{\) timer\} & Turn profiling on using the specified timer or resume if profiling was stopped \\
\hline state- \({ }^{\text {P }}\) ROFILE 'stop' & Suspend the collection of profiling data \\
\hline state- \({ }^{\text {a PROFILE }}\) 'clear' & Turn profiling off, if active, and discard any collected profiling data \\
\hline state - PPROFILE 'calibrate' & Calibrate the profiling timer \\
\hline state \(-\square\) PROFILE 'state' & Query profiling state \\
\hline data*- PRROFILE 'data' & Retrieve profiling data in flat form \\
\hline data*- \({ }^{\text {PROFILE }}\) 'tree' & Retrieve profiling data in tree form \\
\hline
\end{tabular}

DPROF ILE has 2 states:
- active - the profiler is running and profiling data is being collected.
- inactive - the profiler is not running.

For most actions, the result of पPROF ILE is its current state and contains:
[1] character vector indicating the DPROF ILE state having one of the values 'active' or 'inactive'
character vector indicating the timer being used having one of the
[2] values 'CPU' or 'elapsed'
call time bias in millis'econds. This is the amount of time, in
[3] milliseconds, that is consumed for the system to take a time measurement.
[4] timer granularity in milliseconds. This is the resolution of the timer being used.

\section*{state- \(\square\) PROFILE 'start' \{timer\}}

Turn profiling on; timer is an optional case-independent character vector containing 'CPU' or 'elapsed' or 'none'. If omitted, it defaults to 'CPU'. If timer is 'none', पPROF ILE can be used to record which lines of code are executed without incurring the timing overhead.

The first time a particular timer is chosen, पPROF ILE will spend 1000 milliseconds ( 1 second) to approximate the call time bias and granularity for that timer.
```

 \squarePROFILE 'start' 'CPU'
 active CPU 0.0001037499999 0.0001037499999
 state-[PROFILE 'stop'

```

Suspends the collection of profiling data.
```

 \squarePROFILE 'stop'
 inactive CPU 0.0001037499999 0.0001037499999
    ```

\section*{state- \(\square\) PROFILE 'clear'}

Clears any collected profiling data and, if profiling is active, places profiling in an inactive state.
\[
\begin{array}{lll}
\text { ПPROFILE } & \text { 'clear' } \\
\text { inactive } 0 & 0
\end{array}
\]

\section*{state \(-\square\) PROFILE 'calibrate'}

Causes CPROF ILE to perform a 1000 millisecond calibration to approximate the call time bias and granularity for the current timer. Note, a timer must have been previously selected by using DPROF ILE 'start'.

DPROF ILE will retain the lesser of the current timer values compared to the new values computed by the calibration. The rationale for this is to use the smallest possible values of which we can be certain.
```

 \squarePROFILE'calibrate'
 active CPU 0.0001037499997 0.0001037499997
 state-\squarePROFILE 'state'

```

Returns the current profiling state.
```

)clear
 clear ws
GPROFILE 'state'
inactive 0 0
\squarePROFILE 'start' 'CPU'
active CPU 0.0001037499997 0.0001037499997
OPROFILE 'state'
active CPU 0.0001037499997 0.0001037499997
data\&-\squarePROFILE 'data'

```

Retrieves the collected profiling data. Specifying ' data' returns:
[;1] function name
[;2] function line number or \(\theta\) for a whole function entry
[;3] number of times the line or function was executed
[ ; 4] accumulated time (ms) for this entry exclusive of items called by this entry
[ ; 5] accumulated time (ms) for this entry inclusive of items called by this entry
[;6] number of times the timer function was called for the exclusive time
[;7] number of times the timer function was called for the inclusive time

\section*{Example: (numbers have been truncated for formatting)}
\begin{tabular}{lrrrrrr}
\multicolumn{8}{c}{ QPROFILE } & \multicolumn{7}{c}{ data' } \\
\#.foo & 1 & 1 & 1.04406 & 39347.64945 & 503 & 4080803 \\
\#.foo & 1 & 1 & 0.12488 & 0.124887 & 1 & 1 \\
\#.foo & 2 & 100 & 0.58851 & 39347.193900 & 200 & 4080500 \\
\#.foo & 3 & 100 & 0.21340 & 0.213406 & 100 & 100 \\
\#.NS1.goo & 100 & 99.44404 & 39346.6053 & 50300 & 4080300 \\
\#.NS1.goo & 1 & 100 & 0.61679 & 0.616793 & 100 & 100 \\
\#.NS1.goo & 2 & 10000 & 67.80292 & 39314.9642 & 20000 & 4050000 \\
\#.NS1.goo & 3 & 10000 & 19.60274 & 19.6027 & 10000 & 10000
\end{tabular}

\section*{data- \({ }^{\text {PPROFILE }}\) 'tree'}

Retrieve the collected profiling data in tree format:

\section*{[;1] depth level}
[;2] function name
[;3] function line number or \(\theta\) for a whole function entry
[;4] number of times the line or function was executed
[5] accumulated time (ms) for this entry exclusive of items called by this entry
[;6
accumulated time (ms) for this entry inclusive of items called by this entry
[;7
number of times the timer function was called for the exclusive time
number of times the timer function was called for the inclusive
[;8] time

\section*{Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{DPROFILE 'tree'} \\
\hline 0 & \#.foo & & 1 & 1.04406 & 39347.64945 & 503 & 4080803 \\
\hline 1 & \#.foo & 1 & 1 & 0.12488 & 0.12488 & 1 & 1 \\
\hline 1 & \#.foo & 2 & 100 & 0.58851 & 39347.19390 & 200 & 4080500 \\
\hline 2 & \#.NS1.goo & & 100 & 99.44404 & 39346.60538 & 50300 & 4080300 \\
\hline 3 & \#.NS1.goo & 1 & 100 & 0.61679 & 0.61679 & 100 & 100 \\
\hline 3 & \#.NS1.goo & 2 & 10000 & 67.80292 & 39314.96426 & 20000 & 4050000 \\
\hline 4 & \#.NS2.moo & & 10000 & 39247.16133 & 39247.16133 & 4030000 & 4030000 \\
\hline 5 & \#.NS2.moo & 1 & 10000 & 39.28315 & 39.28315 & 10000 & 10000 \\
\hline 5 & \#.NS2.moo & 2 & 1000000 & 36430.65236 & 36430.65236 & 1000000 & 1000000 \\
\hline 5 & \#.NS2.moo & 3 & 1000000 & 1645.36214 & 1645.36214 & 1000000 & 1000000 \\
\hline 3 & \#.NS1.goo & 3 & 10000 & 19.60274 & 19.60274 & 10000 & 10000 \\
\hline 1 & \#.foo & 3 & 100 & 0.21340 & 0.21340 & 100 & 100 \\
\hline
\end{tabular}

Note that rows with an even depth level in column [ ; 1] represent function summary entries and odd depth level rows are function line entries. Recursive functions will generate separate rows for each level of recursion.

\section*{Notes}

\section*{Profile Data Entry Types}

The results of पPROFILE 'data' and पPROFILE 'tree' have two types of entries; function summary entries and function line entries. Function summary entries contain \(\theta\) in the line number column, whereas function line entries contain the line number. Dynamic functions line entries begin with 0 as they do not have a header line like traditional functions. The timer data and timer call counts in function summary entries represent the aggregate of the function line entries plus any time spent that cannot be directly attributed to a function line entry. This could include time spent during function initialisation, etc.

\section*{Example:}
\begin{tabular}{lrrrrrr} 
\#.foo & & 1 & 1.04406 & 39347.649450 & 503 & 4080803 \\
\#.foo & 1 & 1 & 0.12488 & 0.124887 & 1 & 1 \\
\#.foo & 2 & 100 & 0.58851 & 39347.193900 & 200 & 4080500 \\
\#.foo & 3 & 100 & 0.21340 & 0.213406 & 100 & 100
\end{tabular}

\section*{Timer Data Persistence}

The profiling data collected is stored outside the workspace and will not impact workspace availability. The data is cleared upon workspace load, clear workspace, —PROFILE 'clear', or interpreter sign off.

\section*{The PROFILE User Command}

JPROF ILE is a utility which implements a high-level interface to ZPROF ILE and provides reporting and analysis tools that act upon the profiling data. For further information, see Tuning Applications using the Profile User Command.

\section*{Using DPROF ILE Directly}

If you choose to use DPROF ILE directly, the following guidelines and information may be of use to you.

Note: Running your application with CPROF ILE turned on incurs a significant processing overhead and will slow your application down.

\section*{Decide which timer to use}

DPROF ILE supports profiling of either CPU or elapsed time. CPU time is generally of more interest in profiling application performance.

\section*{Simple Profiling}

To get a quick handle on the top CPU time consumers in an application, use the following procedure:
- Make sure the application runs long enough to collect enough data to overcome the timer granularity - a reasonable rule of thumb is to make sure the application runs for at least ( \(4000 \times 4 \supset \square\) PROFILE 'state') milliseconds.
- Turn profiling on with DPROFILE 'start' CPU
- Run your application.
- Pause the profiler with पPROFILE 'stop'
- Examine the profiling data from पPROFILE 'data' or DPROFILE 'tree' for entries that consume large amounts of resource.

This should identify any items that take more than \(10 \%\) of the run time.
To find finer time consumers, or to focus on elapsed time rather than CPU time, take the following additional steps prior to running the profiler:

Turn off as much hardware as possible. This would include peripherals, network connections, etc.
- Turn off as many other tasks and processes as possible. These include antivirus software, firewalls, internet services, background tasks.
- Raise the priority on the Dyalog APL task to higher than normal, but in general avoid giving it the highest priority.
- Run the profiler as described above.

Doing this should help identify items that take more than \(1 \%\) of the run time.

\section*{Advanced Profiling}

The timing data collected by DPROF ILE is not adjusted for the timer's call time bias; in other words, the times reported by DPROF ILE include the time spent calling the timer function. One effect of this can be to make "cheap" lines that are called many times seem to consume more resource. If you desire more accurate profiling measurements, or if your application takes a short amount of time to run, you will probably want to adjust for the timer call time bias. To do so, subtract from the timing data the timer's call time bias multiplied by the number of times the timer was called.

\section*{Example:}
```

CallTimeBias*3د\squarePROFILE 'state'
RawTimes*\squarePROFILE 'data'
Adjusted<RawTimes[;4 5]-RawTimes[;6 7]\timesCallTimeBias

```

\section*{Print Width:}

\section*{DPW}

DPW is the maximum number of output characters per line before folding the display.
IPW may be assigned any integer value in the range 42 to 32767 . Note that in versions of Dyalog APL prior to 13.0 DPW had a minimum value of 30 ; this was increased to support 128-bit decimal values.

If an attempt is made to display a line wider than DPW , then the display will be folded at or before the DPW width and the folded portions indented 6 spaces. The display of a simple numeric array may be folded at a width less than DPW so that individual numbers are not split.
\(\square\) PW ony affects output, either direct or through \(\square\) output. It does not affect the result of the function Format ( \(\Phi\) ), of the system function DFMT, or output through the system functions DARBOUT and DARBIN, or output through D.

Note that if the auto_pw parameter (Options/Configure/Session/Auto PW) is set to 1, —PW is automatically adjusted whenever the Session window is resized. In these circumstances, a value assigned to \(\square \mathrm{PW}\) will only apply until the Session window is next resized.

\section*{Examples}
\[
\begin{aligned}
& \square \mathrm{PW} \leftarrow 42 \\
& \square \leftarrow 3 \rho \div 3 \\
& 0.33333333330 .3333333333 \quad 0.3333333333 \\
& 0.3333333333
\end{aligned}
\]

\section*{Cross References:}

\section*{R-DREFS Y}
\(Y\) must be a simple character scalar or vector, identifying the name of a function or operator, or the object representation form of a function or operator (see "Object Representation: " on page 540). \(R\) is a simple character matrix, with one name per row, of identified names in the function or operator in \(Y\) excluding distinguished names of system constants, variables or functions.

\section*{Example}
ZVR'OPTIONS'
\(\nabla\) OPTIONS;OPTS;INP
[1] a REQUESTS AND EXECUTES AN OPTION
[2] OPTS \&'INPUT' 'REPORT' 'END'
[3] IN:INP \(\leftarrow\) ASK'OPTION:'
[4] \(\rightarrow\) EX \(\circ \ddot{\sim}(\subset\) INP) \(\in\) OPTS
[5] 'INVALID OPTION. SELECT FROM',OPTS \(\diamond \rightarrow I N\)
[6] EX: \(\rightarrow\) EX+OPTS¿cINP
[7] INPUT \(\diamond \rightarrow\) IN
[8] REPORT \(\diamond \rightarrow I N\)
[9] END:
\(\nabla\)
GREFS'OPTIONS'
ASK
END
EX
IN
INP
INPUT
OPTIONS
OPTS
REPORT
If \(Y\) is locked or is an External Function, \(R\) contains its name only. For example:

\section*{DLOCK 'OPTIONS' \(\diamond\) DREFS 'OPTIONS' \\ OPTIONS}

If \(Y\) is the name of a primitive, external or derived function, \(R\) is an empty matrix with shape 00 .

\section*{Replace: \(R+\{X\}(A \cap R B) Y\)}
\(\square R\) (Replace) and \(\square S\) (Search) are system operators which take search pattern(s) as their left arguments and transformation rule(s) as their right arguments; the derived function operates on text data to perform either a search, or a search and replace operation.

The search patterns may include Regular Expressions so that complex searches may be performed. \(\square R\) and \(\square S\) utilise the open-source regular-expression search engine PCRE, which is built into Dyalog APL and distributed according to the PCRE license which is published separately.

The transformation rules are applied to the text which matches the search patterns; they may be given as a simple character vector, numeric codes, or a function.

The two system operators, \(\square R\) for replace and \(\overline{C S}\) for search, are syntactically identical. With \(\square R\), the input document is examined; text which matches the search pattern is amended and the remainder is left unchanged. With \(\bar{\square}\), each match in the input document results in an item in the result whose type is dependent on the transformation specified.The operators use the Variant operator to set options.

A specifies one or more search patterns, being given as a single character, a character vector, a vector of character vectors or a vector of both characters and character vectors. See 'search pattern' following.
\(B\) is the transformation to be performed on matches within the input document; it may be either one or more transformation patterns (specified as a character, a character vector, a vector of character vectors, or a vector of both characters and character vectors), one or more transformation codes (specified as a numeric scalar or a numeric vector) or a function; see 'transformation pattern', 'transformation codes' and 'transformation function' following.
\(Y\) specifies the input document; see 'input document' below.
\(X\) optionally specifies an output stream; see 'output' below.
\(R\) is the result value; see 'output' below.

\section*{Examples of replace operations}
```

 ('.at' DR '\uO') 'The cat sat on the mat'
 The CAT SAT on the MAT

```

In the search pattern the dot matches any character, so the pattern as a whole matches sequences of three characters ending 'at'. The transformation is given as a character string, and causes the entire matching text to be folded to upper case.
```

 ('\w+' DR {\phi\omega.Match}) 'The cat sat on the mat'
 ehT tac tas no eht tam

```

The search pattern matches each word. The transformation is given as a function, which receives a namespace containing various variables describing the match, and it returns the match in reverse, which in turn replaces the matched text.

\section*{Examples of search operations}
```

 STR\leftarrow'The cat sat on the mat'
 ('.at' \S '\uO') STR
 CAT SAT MAT

```

The example is identical to the first, above, except that after the transformation is applied to the matches the results are returned in a vector, not substituted into the source text.
```

 ('.at' ZS {\omega.((1\uparrowOffsets),1\uparrowLengths)}) STR
 4 3 8 3 19 3

```

When searching, the result vector need not contain only text and in this example the function returns the numeric position and length of the match given to it; the resultant vector contains these values for each of the three matches.
```

 ('.at' \S O 1) STR
 4 3 8 3 19 3

```

Here the transformation is given as a vector of numeric codes which are a short-hand for the position and length of each match; the overall result is therefore identical to the previous example.

These examples all operate on a simple character vector containing text, but the text may be given in several forms - character vectors, vectors of character vectors, and external data streams. These various forms constitute a 'document'. When the result also takes the form of a document it may be directed to a stream.

\section*{Input Document}

The input document may be an array or a data stream.
When it is an array it may be given in one of two forms:
1. A character scalar or vector
2. A vector of character vectors

In Version 13.0 the only supported data stream is a native file, specified as tie number, which is read from the current position to the end. If the file is read from the start, and there is a valid Byte Order Mark (BOM) at the start of it, the data encoding is determined by this BOM. Otherwise, data in the file is assumed to be encoded as specified by the InEnc option.

Hint: once a native file has been read to the end by \(\square R\) or \(\square S\) it is possible to reset the file position to the start so that it may be read again using:

\section*{\{\} \(\operatorname{ZNREAD}\) tienum 8200}

The input document is comprised of lines of text. Line breaks may be included in the data:

Implicitly
- Between each item in the outer vector (type 2, above)

Explicitly, as
- carriage return
- line feed
- carriage return and line feed together, in that order
- vertical tab (U+000B)
- newline ( \(\mathrm{U}+0085\) )
- form Feed ( \(\mathrm{U}+000 \mathrm{C}\) )
- line Separator (U+2028)
- paragraph Separator \((\mathrm{U}+2029)\)

The implicit line ending character may be set using the EOL option. Explicit line ending characters may also be replaced by this character - so that all line endings are normalised - using the NEOL option.

The input document may be processed in line mode, document mode or mixed mode. In document mode and mixed mode, the entire input document, line ending characters included, is passed to the search engine; in line mode the document is split on line endings and passed to the search engine in sections without the line ending characters. The choice of mode affects both memory usage and behaviour, as documented in the section 'Line, document and mixed modes'.

\section*{Output}

The format of the output is dependent on whether \(\square S\) or \(\square R\) are in use, whether an output stream is specified and, for \(\square R\), the form of the input and whether the ResultText option is specified.

An output data stream may optionally be specified. In Version 13.0 the only supported data stream is a native file, specified as tie number, and all output will be appended to it. Data in the stream is encoded as specified by the OutEnc option. If this encoding specifies a Byte Order Mark and the file is initially empty then the Byte Order Mark will be written at the start. Appending to existing data using a different encoding is permitted but unlikely to produce desirable results. If an input stream is also used, care must be taken to ensure the input and output streams are not the same.

\section*{-R}

With no output stream specified and unless overridden by the ResultText option, the derived function result will be a document which closely matches the format of the input document, as follows:

A character scalar or vector input will result in a character vector output. Any and all line endings in the output will be represented by line ending characters within the character vector.

A vector of character vectors as input will result in a vector of character vectors as document output. Any and all line endings in the output document will be implied at the end of each character vector.

A stream as input will result in a vector of character vectors document output. Any and all line endings in the output document will be implied at the end of each character vector.

Note that the shape of the output document may be significantly different to that of the input document.

If the ResultText option is specified, the output type may be forced to be a character vector or vector of character vectors as described above, regardless of the input document.

With an output stream specified there is no result - instead the text is appended to the stream. If the appended text does not end with a line ending character then the line ending character specified by the EOL option is also appended.

\section*{ZS}

With no output stream specified, the result will be a vector containing one item for each match in the input document, of types determined by the transformation performed on each match.

With an output stream specified there is no result - instead each match is appended to the stream. If any match does not end with a line ending character then the line ending character specified by the EOL option is also appended. Only text may be written to the stream, which means:
- When a transformation function is used, the function may only generate a character vector result.
- Transformation codes may not be used.

\section*{Search pattern}

A summary of the syntax of the search pattern is reproduced from the PCRE documentation verbatim in Appendix A herein. A full description is provided in Appendix A to the Version 13.0 Release Notes.

There may be multiple search patterns. If more than one search pattern is specified and more than one pattern matches the same part of the input document then priority is given to the pattern specified first.

\section*{Transformation pattern}

For each match in the input document, the transformation pattern causes the creation of text which, for \(\square R\), replaces the matching text and, for \(\square S\), generates one item in the result.

There may be either one transformation pattern, or the same number of transformation patterns as search patterns. If there are multiple search patterns and multiple transformation patterns then the transformation pattern used corresponds to the search pattern which matched the input text.

Transformation patterns may not be mixed with transformation codes or functions.

The following characters have special meaning:
\begin{tabular}{|l|l|}
\hline\(\%\) & \begin{tabular}{l} 
acts as a placeholder for the entire line (line mode) or document \\
(document mode or mixed mode) which contained the match
\end{tabular} \\
\hline\(\&\) & acts as a placeholder for the entire portion of text which matched \\
\hline\(\backslash \mathrm{n}\) & represents a line feed character \\
\hline\(\backslash \mathrm{r}\) & represents a carriage return \\
\hline\(\backslash 0\) & equivalent to \& \\
\hline\(\backslash n\) & \begin{tabular}{l} 
acts as a placeholder for the text which matched the first to ninth \\
subpattern; \(n\) may be any single digit value from 1 to 9
\end{tabular} \\
\hline\(\backslash(n)\) & \begin{tabular}{l} 
acts as a placeholder for the text which matched the numbered \\
subpattern; \(n\) may have an integer value from 0 to 63.
\end{tabular} \\
\hline\(\backslash<n a m e>\) & \begin{tabular}{l} 
acts as a placeholder for the text which matched the named \\
subpattern
\end{tabular} \\
\hline\(\backslash \backslash\) & represents the backslash character \\
\hline\(\backslash \%\) & represents the percent character \\
\hline\(\backslash \&\) & represents the ampersand character \\
\hline
\end{tabular}

The above may be qualified to fold matching text to upper- or lower-case by using the \(\mathbf{u}\) and \(\mathbf{I}\) modifiers respectively. Character sequences beginning with the backslash place the modifier after the backslash; character sequences with no leading backslash add both a backslash and the modifier to the start of the sequence, for example:
\begin{tabular}{|l|l|}
\hline \u\& & \begin{tabular}{l} 
acts as a placeholder for the entire portion of text which matched, \\
folded to upper case
\end{tabular} \\
\hline\(\backslash 10\) & equivalent to \(\backslash 1 \&\) \\
\hline
\end{tabular}

Character sequences beginning with the backslash other that those shown are invalid. All characters other than those shown are literal values and are included in the text without modification.

\section*{Transformation codes}

The transformation codes are a numeric scalar or vector. For each match in the input document, a numeric scalar or vector of the same shape as the transformation codes is created, with the codes replaced with values as follows:
\begin{tabular}{|l|l|}
\hline 0 & \begin{tabular}{l} 
The offset from the start of the line (line mode) or document (document \\
mode or mixed mode) of the start of the match, origin zero.
\end{tabular} \\
\hline 1 & The length of the match. \\
\hline 2 & \begin{tabular}{l} 
In line mode, the block number in the source document of the start of \\
the match. The value is origin zero. In document mode or mixed mode \\
this value is always zero.
\end{tabular} \\
\hline 3 & \begin{tabular}{l} 
The pattern number which matched the input document, origin \\
zero.Transformation codes may only be used with S
\end{tabular} \\
\hline
\end{tabular}

\section*{Transformation Function}

The transformation function is called for each match within the input document. The function is monadic and is passed a namespace, containing the following variables:
\begin{tabular}{|l|l|}
\hline Block & \begin{tabular}{l} 
The entire line (line mode) or document (document mode or \\
mixed mode) in which the match was found.
\end{tabular} \\
\hline BlockNum & \begin{tabular}{l} 
With line mode, the block (line) number in the source \\
document of the start of the match. The value is origin zero. \\
With document mode or mixed mode the entire document \\
is contained within one block and this value is always \\
zero.
\end{tabular} \\
\hline Pattern & The search pattern which matched. \\
\hline PatternNum & The index-zero pattern number which matched. \\
\hline Match & The text within Block which matched Pattern. \\
\hline Offsets & \begin{tabular}{l} 
A vector of one or more index-zero offsets relative to the \\
start of Block. The first value is the offset of the entire \\
match; any and all additional values are the offsets of the \\
portions of the text which matched the subpatterns, in the \\
order of the subpatterns within Pattern.
\end{tabular} \\
\hline Lengths & \begin{tabular}{l} 
A vector of one or more lengths, corresponding to each \\
value in Offset.
\end{tabular} \\
\hline Names & \begin{tabular}{l} 
A vector of one or more character vectors corresponding to \\
each of the values in Offsets, specifying the names given to \\
the subpatterns within Pattern. The first entry \\
(corresponding to the match) and all subpatterns with no \\
name are included as length zero character vectors.
\end{tabular} \\
\hline ReplaceMode & \begin{tabular}{l} 
A Boolean indicating whether the function was called by \\
DR (value 1) or \(\square S ~(v a l u e ~ 0) . ~\)
\end{tabular} \\
\hline TextOnly & \begin{tabular}{l} 
A Boolean indicating whether the return value from the \\
function must be a character vector (value 1) or any value \\
(value 0).
\end{tabular} \\
\hline
\end{tabular}

The return value from the function is used as follows:
With \(\square R\) the function must return a character vector. The contents of this vector are used to replace the matching text.

With \(\overline{C S}\) the function may return no value. If it does return a value:
- When output is being directed to a stream it must be a character vector.
- Otherwise, it may be any value. The overall result of the derived function is the catenation of the enclosure of each returned value into a single vector.

The passed namespace exists over the lifetime of \(\square R\) or \(\square S\); the function may therefore preserve state by creating variables in the namespace.

The function may itself call \(\square R\) or \(\square S\).
The locations of the match within Block and subpatterns within Match are given as offsets rather than positions, i.e. the values are the number of characters preceding the data, and are not affected by the Index Origin.

There may be only one transformation function, regardless of the number of search patterns.

\section*{Options}

Options are specified using the Variant operator. The Principal option is IC.
Default values are highlighted thus.

\section*{IC Option}

When set, case is ignored in searches.
\begin{tabular}{|l|l|}
\hline 1 & Matches are not case sensitive. \\
\hline 0 & Matches are case sensitive. \\
\hline
\end{tabular}

Example:
```

 ('[AEIOU]' DR 'X' 目 'IC' 1) 'ABCDE abcde'
 XBCDX XbcdX
('[AEIOU]' DR 'X' 目 1)'ABCDE abcde'
XBCDX XbcdX

```

\section*{Mode Option}

Specifies whether the input document is interpreted in line mode，document mode or mixed mode．
\begin{tabular}{|l|l|}
\hline L & \begin{tabular}{l} 
When line mode is set，the input document is split into \\
separate lines（discarding the line ending characters \\
themselves），and each line is processed separately．This means \\
that the ML option applies per line，and the＇\(\wedge\)＇and＇\＄＇anchors \\
match the start and end respectively of each line．Because the \\
document is split，searches can never match across multiple \\
lines，nor can searches for line ending characters ever succeed． \\
Setting line mode can result in significantly reduced memory \\
requirements compared with the other modes．
\end{tabular} \\
\hline D & \begin{tabular}{l} 
When document mode is set，the entire input document is \\
processed as a single block．The ML option applies to this \\
entire block，and the＇＾＇and＇\＄＇anchors match the start and end \\
respectively of the block－not the lines within it．Searches can \\
match across lines，and can match line ending characters．
\end{tabular} \\
\hline M & \begin{tabular}{l} 
When mixed mode is set，the＇N＇and＇\＄＇anchors match the start \\
and end respectively of each line，as if line mode is set，but in \\
all other respects behaviour is as if document mode is set－the \\
entire input document is processed in a single block．
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples：}
（＇\＄＇DR＇［Endline］＇\(⿴ 囗 ⿱ 一 一\) \(A B C[E n d l i n e] ~ D E F[E n d l i n e]\)
（＇\＄＇DR＇［Endline］＇\(⿴ 囗 ⿱ 一 一\)
ABC DEF［Endline
（＇\＄＇\(\square R\)＇［Endline］＇回＇Mode＇＇M＇）＇ABC＇＇DEF＇ \(A B C[E n d l i n e] ~ D E F[E n d l i n e]\)

\section*{DotAll Option}

Specifies whether the \(\operatorname{dot}\left({ }^{\prime}.\right)\) ) character in search patterns matches line ending characters.
\begin{tabular}{|l|l|}
\hline 0 & \begin{tabular}{l} 
The ' \begin{tabular}{|l} 
' c character in search patterns matches most characters, \\
but not line endings.
\end{tabular} \\
\hline 1
\end{tabular} \\
\hline
\end{tabular}

This option is invalid in line mode, because line endings are stripped from the input document.

\section*{Example:}
```

 ('.' DR 'X' G'Mode' 'D') 'ABC' 'DEF'
 XXX XXX
('.' DR 'X' 目('Mode' 'D')('DotAll' 1)) 'ABC' 'DEF'
XxxXXXXX

```

\section*{EOL Option}

Sets the line ending character which is implicitly present between character vectors, when the input document is a vector of character vectors.
\begin{tabular}{|l|l|}
\hline CR & Carriage Return (U+000D) \\
\hline LF & Line Feed (U+000A) \\
\hline CRLF & Carriage Return followed by New Line \\
\hline VT & Vertical Tab (U+000B) \\
\hline NEL & New Line (U+0085) \\
\hline FF & Form Feed (U+000C) \\
\hline LS & Line Separator (U+2028) \\
\hline PS & Paragraph Separator (U+2029) \\
\hline
\end{tabular}

In the Classic Edition, setting a value which is not in DAVU may result in a TRANSLATION ERROR.

\section*{Example:}
```

 ('\n' DR'X' 目('Mode' 'D')('EOL' 'LF')) 'ABC' 'DEF'
 ABCXDEF

```

Here, the implied line ending between 'ABC' and 'DEF' is ' \(n\) ', not the default ' \(\backslash \mathbf{r} \backslash n\) '.

\section*{NEOL Option}

Specifies whether explicit line ending sequences in the input document are normalised by replacing them with the character specified using the EOL option.
\begin{tabular}{|l|l|}
\hline 0 & Line endings are not normalised. \\
\hline 1 & Line endings are normalised. \\
\hline
\end{tabular}

\section*{Example:}

\section*{37}
'In' has matched both explicit line ending characters in the input, even though they are different.

\section*{ML Option}

Sets a limit to the number of processed pattern matches per line (line mode) or document (document mode and mixed mode).
\begin{tabular}{|l|l|}
\hline Positive value n & Sets the limit to the first n matches. \\
\hline 0 & Sets no limit. \\
\hline Negative value \(^{-} \mathrm{n}\) & Sets the limit to exactly the nth match. \\
\hline
\end{tabular}

\section*{Examples:}
```

 ('.' \(\quad\) R 'x' \(\mathrm{B}^{\prime} \mathrm{ML}^{\prime} 2\)) 'ABC' 'DEF'
 $x \times C \quad x x F$
('.' \quad R 'x' $\mathrm{B}^{\prime} \mathrm{ML}^{\prime}-2$) 'ABC' 'DEF'
AxC DxF
('.' $\quad R^{\prime} x^{\prime}$ 日 'ML' - 4 回 'Mode' 'D') 'ABC' 'DEF'
ABC $x E F$

```

\section*{Greedy Option}

Controls whether patterns are "greedy" (and match the maximum input possible) or are not (and match the minimum). Within the pattern itself it is possible to specify greediness for individual elements of the pattern; this option sets the default.
\begin{tabular}{|l|l|}
\hline 1 & Greedy by default. \\
\hline 0 & Not greedy by default. \\
\hline
\end{tabular}

\section*{Examples:}

X
('[A-Z].*[0-9]' \(\square R \quad\) 'X' 日 'Greedy' 1)'ABC123 DEF456'
('[A-Z].*[0-9]' \(\square R\) 'X' 回 'Greedy' 0)'ABC123 DEF456'
X23 X56

\section*{OM Option}

Specifies whether matches may overlap.
\begin{tabular}{|l|l|}
\hline 1 & \begin{tabular}{l} 
Searching continues for all patterns and then from the \\
character following the start of the match, thus permitting \\
overlapping matches.
\end{tabular} \\
\hline 0 & \begin{tabular}{l} 
Searching continues from the character following the end of \\
the match.
\end{tabular} \\
\hline
\end{tabular}

This option may only be used with \(\square S\). With \(\square R\) searching always continues from the character following the end of the match (the characters following the start of the match will have been changed).

\section*{Examples:}


\section*{InEnc Option}

This option specifies the encoding of the input stream when it cannot be determined automatically.

When the stream is read from its start, and the start of the stream contains a recognised Byte Order Mark (BOM), the encoding is taken as that specified by the BOM and this option is ignored. Otherwise, the encoding is assumed to be as specified by this option.
\begin{tabular}{|l|l|}
\hline UTF8 & \begin{tabular}{l} 
The stream is processed as UTF-8 data. Note that ASCII is a \\
subset of UTF-8, so this default is also suitable for ASCII data.
\end{tabular} \\
\hline UTF16LE & The stream is processed as UTF16 little-endian data. \\
\hline UTF16BE & The stream is processed as UTF16 big-endian data. \\
\hline ASCII & \begin{tabular}{l} 
The stream is processed as ASCII data. If the stream contains \\
any characters outside of the ASCII range then an error is \\
produced.
\end{tabular} \\
\hline ANSI & The stream is processed as ANSI (Windows-1252) data. \\
\hline
\end{tabular}

For compatibility with the OutEnc option, the above UTF formats may be qualified with -BOM (e.g. UTF-BOM). For input streams, the qualified and unqualified options are equivalent.

\section*{OutEnc Option}

When the output is written to a stream, the data may be encoded on one of the following forms:
\begin{tabular}{|l|l|}
\hline Implied & \begin{tabular}{l} 
If input came from a stream then the encoding format is the \\
same as the input stream, otherwise UTF-8
\end{tabular} \\
\hline UTF8 & The data is written in UTF-8 format. \\
\hline UTF16LE & The data is written in UTF-16 little-endian format. \\
\hline UTF16BE & The data is written in UTF-16 big-endian format. \\
\hline ASCII & The data is written in ASCII format. \\
\hline ANSI & The data is written in ANSI (Windows-1252) format. \\
\hline
\end{tabular}

The above UTF formats may be qualified with -BOM (e.g. UTF8-BOM) to specify that a Byte Order Mark should be written at the start of the stream. For files, this is ignored if the file already contains any data.

\section*{Enc Option}

This option sets both InEnc and OutEnc simultaneously, with the same given value. Any option value accepted by those options except Implied may be given.

\section*{ResultText Option}

For \(\square R\), this option determines the format of the result.
\begin{tabular}{|l|l|}
\hline Implied & \begin{tabular}{l} 
The output will either be a character vector or a vector of \\
character vectors, dependent on the input document type
\end{tabular} \\
\hline Simple & \begin{tabular}{l} 
The output will be a character vector. Any and all line \\
endings in the output will be represented by line ending \\
characters within the character vector.
\end{tabular} \\
\hline Nested & \begin{tabular}{l} 
The output will be a vector of character vectors. Any and all \\
line endings in the output document will be implied at the \\
end of each character vector.
\end{tabular} \\
\hline
\end{tabular}

This option may only be used with \(\square R\).
Examples:
```

 ZUCS ." ('A' DR 'x') 'AB' 'CD'
 12066 67 68
OUCS ('A' DR 'x' 且 'ResultText' 'Simple') 'AB' 'CD'
12066 13 10 67 68

```

\section*{Line, document and mixed modes}

The Mode setting determines how the input document is packaged as a block and passed to the search engine. In line mode each line is processed separately; in document mode and mixed mode the entire document is presented to the search engine. This affects both the semantics of the search expression, and memory usage.

\section*{Semantic differences}
- The ML option applies per block of data.
- In line mode, search patterns cannot be constructed to span multiple lines. Specifically, patterns that include line ending characters (such as ' \(1 r\) ') will never match because the line endings are never presented to the search engine.
- By default the search pattern metacharacters ' \(\wedge\) ' and ' \(\$\) ' match the start and end of the block of data. In line mode this is always the start and end of each line. In document mode this is the start and end of the document. In mixed mode the behaviour of ' \(\wedge\) ' and ' \(\$\) ' are amended by setting the PCRE option 'MULTILINE' so that they match the start and end of each line within the document.

\section*{Memory usage differences}
- Blocks of data passed to the search engine are processed and stored in the workspace. Processing the input document in line mode limits the total memory requirements; in particular this means that large streams can be processed without holding all the data in the workspace at the same time.

\section*{Technical Considerations}
\(\square R\) and \(\square S\) utilise the open-source regular-expression search engine PCRE, which is built into the Dyalog software and distributed according to the PCRE license which is published separately.

Before data is passed to PCRE it is converted to UTF-8 format. This converted data is buffered in the workspace; processing large documents may have significant memory requirements. In line mode, the data is broken into individual lines and each is processed separately, potentially reducing memory demands.

It is possible to save a workspace with an active \(\square R\) or \(\square S\) on the stack and execution can continue when the workspace is reloaded with the same interpreter version. Later versions of the interpreter may not remain compatible and may signal a DOMA IN ERROR with explanatory message in the status window if it is unable to continue execution.

PCRE has a buffer length limit of \(2^{31}\) bytes (2GB). UTF-8 encodes each character using between 1 and 6 bytes (typically 1 or 3 ). In the very worst case, where every character is encoded in 6 bytes, the maximum block length which can be searched would be \(357,913,940\) characters.

\section*{Further Examples}

Several of the examples use the following vector as the input document：
text
To be or not to be－that is the question： Whether＇tis nobler in the mind to suffer The slings and arrows of outrageous fortune， Or to take arms against a sea of troubles

Replace all upper and lower－case vowels by＇ X ＇：
```

 ('[aeiou]' DR 'X' 目'IC' 1) text
 TX bX Xr nXt tX bX- thXt Xs thX qXXstXXn:
WhXthXr 'tXs nXblXr Xn thX mXnd tX sXffXr
ThX slXngs Xnd XrrXws Xf XXtrXgXXXs fXrtXnX,
Xr tX tXkX Xrms XgXXnst X sXX Xf trXXblXs

```

Replace only the second vowel on each line by＇\(\ V O W E L\)＇＇：
（＇［aeiou］＇\(\quad\) R＇\\VOWEL\\＇回（＇IC＇1）（＇ML＇－2））text To b\VOWEL\ or not to be－that is the question： Wheth \(\backslash V O W E L \backslash r\)＇tis nobler in the mind to suffer The sl\VOWEL \ngs and arrows of outrageous fortune， Or t\VOWEL\ take arms against a sea of troubles

\section*{Case fold each word：}
```

 ('(?<first>\w)(?<remainder>\w*)' \R
 '\u<first>\l<remainder>') text
To Be Or Not To Be- That Is The Question:
Whether 'Tis Nobler In The Mind To Suffer
The Slings And Arrows Of Outrageous Fortune,
Or To Take Arms Against A Sea Of Troubles

```

Extract only the lines with characters＇or＇（in upper or lower case）on them：
```

 \uparrow('or' DS '%' 目('IC' 1)('ML' 1)) text
 To be or not to be- that is the question:
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

```
Identify which lines contain the word 'or' (in upper or lower case) on them:
```

 ('\bor\b'\squareS 2目('IC' 1)('ML' 1))text
    ```
03

Note the difference between the characters＇or＇（which appear in＇fortune＇）and the word＇or＇．

Place every non-space sequence of characters in brackets:
```

 ('[^\s]+' पR '(&)') 'To be or not to be, that is
 the question'
(To) (be) (or) (not) (to) (be,) (that) (is) (the)
(question)

```

Replace all sequences of one or more spaces by newline. Note that the effect of this is dependent on the input format:

Character vector input results in a single character vector output with embedded newlines:
```

]display ('\s+' DR '\r') 'To be or not to be, that
 is the question'

```
\begin{tabular}{|l|}
\hline To \\
be \\
or \\
not \\
to \\
be, \\
that \\
is \\
the \\
question \\
\hline
\end{tabular}

A vector of two character vectors as input results in a vector of 10 character vectors output:


Change numerals to their expanded names, using a function:
\(\nabla r \leftarrow f a\)
 'five' 'six' 'seven' 'eight' 'nine'
\(\nabla\)
verbose \(\leftarrow('[0-9]\) ' \(\quad\) R f \()\) verbose \(\Phi 27 \times 56 \times 87\)
one three one five four four

\section*{Swap 'red' and 'blue':}
```

 ('red' 'blue' DR 'blue' 'red') 'red hat blue coat'
    ```
blue hat red coat

\section*{Convert a comma separated values (CSV) file so that}
- dates in the first field are converted from European format to ISO, and
- currency values are converted from Deutsche Marks (DEM) to Euros (DEM 1.95583 to \(€ 1\) ).

The currency conversion requires the use of a function. Note the nested use of \(\square R\). Input file:
```

01/03/1980,Widgets,DEM 10.20
02/04/1980,Bolts,DEM 61.75
17/06/1980,Nuts; special rate DEM 17.00,DEM 17.00
18/07/1980,Hammer,DEM 1.25

```

Output file:
```

1980-03-01,Widgets,€ 5.21
1980-04-02,Bolts,€ 31.57
1980-06-17,Nuts; special rate DEM 17.00,€ 8.69
1980-07-18,Hammer,€ 0.63

```
```

 \nabla ret<f a;d;m;y;v
 [1] DIO<0
[2] :Select a.PatternNum
[3] :Case 0
[4] d m
y<{a.Match[a.Offfets[\omega+1]+\imatha.Lengths[\omega+1]]}*\imath3
[5] ret+y,'-',m,'-',d,',
[6] :Else
[7] v*\&a.Block[a.Offsets[1]+ra.Lengths[1]]
[8] v\div\leftarrow1.95583
[9] ret<',€ ',('(\d+\.\d\d).*'पR'\1')\PhiV
[10] :EndSelect
\nabla
in \& 'x.csv' DNTIE O
out \leftarrow 'new.csv' DNCREATE O
dateptn*'(\d{2})/(\d{{2})/(\d{4}),'
valptn*',DEM ([0-9.]+)'
out (dateptn valptn DR f) in
Dnuntie"in out

```

\section*{Create a simple profanity filter. For the list of objectionable words:}
profanity*'bleeding' 'heck'
first construct a pattern which will match the words:
\[
\begin{aligned}
& \text { DOPT 'Mode' 'D') profanity } \\
& \text { ptn } \\
& \text { \b(bleedinglheck) \b }
\end{aligned}
\]
then a function that uses this pattern:
```

 sanitise\leftarrowptn \R '****' Пopt 1
 sanitise ""Heck", I said'
 "****", I said

```

\section*{Random Link:}
—RL establishes a base or seed for generating random numbers using Roll and Deal, and returns the current state of such generation.

Three different random number generatators are provided, which are referred to here as RNG0, RNG1 and RNG2. These are selected using (16807I). See "Random Number Generator:" on page 366. ZRL is relevant only to \(R N G 0\) and \(R N G 1\) for which repeatable pseudo-random series can be obtained by setting \(\square R L\) to a particular value first.

Using \(R N G 0\) or \(R N G 1\), you can set \(\square \mathrm{RL}\) to any integer in the range 1 to \(-1+2 * 31\) or \(-1+2 * 63\) respectively. The latter case requires DFR to be 1287 .

In a clear ws, ZRL is initialised to the value defined by the default_rl parameter which itself defaults to 16807 if it is not defined.

Using RNG0, पRL returns an integer which represents the seed for the next random number in the sequence.

Using RNG1, the system internally retains a block of 312 64-bit numbers which are used one by one to generate the results of roll and deal. When the first block of 312 have been used up, the system generates a second block. In this case, \(\square R L\) returns an integer vector of 32 -bit numbers of length 625 (the first is an index into the block of 312) which represents the internal state of the random number generator. This means that, as with \(R N G 0\), you may save the value of \(\square R L\) in a variable and reassign it later.

Internally, APL maintains the current state separately for \(R N G 0\) and \(R N G 1\). When you switch from one Random Number Generator to the other, the appropriate state is loaded into \(\square R L\).

RNG2 does not permit access to the seed, so in this case \(\square R L\) is not relevant and is not used by Roll and Deal. It will accept any value but will always return zilde.
```

Examples
16807I1 A Select RNG1
0
\squareRL\leftarrow16807
10?10
4 1 6 5 2 9 7 10 3 8
5\uparrow\squareRL
10 0 16807 1819658750 -355441828
X\&?1000p1000
5 T\RL
100 -465541037 -1790786136 -205462449 996695303
\squareRL+16807
10?10
4 1 6 5 2 9 7 10 3 8
Y*?1000p1000
X\equivY
1
5 \RRL
100 -465541037 -1790786136 -205462449 996695303
16807IO \& Select RNGO
1
\squareRL
16807
?9 9 9
2 7 5
?9
7
\squareRL
984943658
\squareRL\leftarrow16807
?9 9 9
275
?9
7
\squareRL
984943658
16807I1 ค Select RNG1
O
5 T|RL
100 -465541037 -1790786136 -205462449 996695303

```

\section*{Space Indicator:}

R-DRSI
\(R\) is a vector of refs to the spaces from which functions in the state indicator were called ( \(\rho \square R S I \leftrightarrow \rho \square N S I \leftrightarrow \rho \square S I\) ).

ORSI and DNSI are identical except that DRSI returns refs to the spaces whereas \(\square N S I\) returns their names. Put another way: \(\square N S I \leftrightarrow \Phi\) " \(\square\) RSI .

Note that \(\quad\) RSI returns refs to the spaces from which functions were called not those in which they are currently running.

\section*{Example}
\(x \quad\)\begin{tabular}{c} 
)OBJECTS \\
yy
\end{tabular}

ZVR 'yy.foo'
\(\nabla r+f o o\)
[1] \(r\) - पSE.goo
\(\nabla\)
ZVR'ISE.goo'
\(\nabla \mathrm{r}+\mathrm{goo}\)

\(\nabla\)
)CS \(x x\)
\#.xx
calling↔\#.yy.foo
]display calling


A non-zero value in \(\square R T L\) places a time limit, in seconds, for input requested via \(\square\), पARBIN, and पSR. \(\square R T L\) may be assigned any integer in the range 0 to 32767. The value is a clear workspace is 0 .

\section*{Example}
```

 \squareRTL&5 \diamond [<'FUEL QUANTITY?' \diamond R&\square
    ```

FUEL QUANTITY?
TIMEOUT
```

\squareRTL\&5 \diamond D<'FUEL QUANTITY?' \diamond R\&-\square

```

Search: \(R+\{X\}(A \square S B) Y\)

See "Replace: " on page 556.

\section*{Save Workspace: \(\{R\}+\{X\}\) DSAVE \(Y\)}

Y must be a simple character scalar or vector, identifying a workspace name. Note that the name must represent a valid file name for the current Operating System. R is a simple logical scalar. The active workspace is saved with the given name in \(Y\). In the active workspace, the value 1 is returned. The result is suppressed if not used or assigned.

The optional left argument \(X\) is either 0 or 1. If \(X\) is omitted or 1 , the saved version of the workspace has execution suspended at the point of exit from the पSAVE function. If the saved workspace is subsequently loaded by DLOAD, execution is resumed, and the value 0 is returned if the result is used or assigned, or otherwise the result is suppressed. In this case, the latent expression value ( OLX ) is ignored.
If \(X\) is 0 , the workspace is saved without any State Indicator in effect. The effect is the same as if you first executed ) RESET and then ) SAVE. In this case, when the workspace is subsequently loaded, the value of the latent expression ( \(\mathbb{C L X}\) ) is honoured if applicable.

A DOMAIN ERROR is reported if the name in \(Y\) is not a valid workspace name or file name, or the reference is to an unauthorised directory.

USAVE will fail and issue DOMAIN ERROR if any threads (other than the root thread 0 ) are running.

Note that the values of all system variables (including \(\square\) SM) and all GUI objects are saved.

\section*{Example}
```

 (口'SAVED' 'ACTIVE' [DIO+\squareSAVE'TEMP']),' WS'
    ```

ACTIVE WS
—LOAD 'TEMP'
SAVED WS

\section*{Screen Dimensions:}

\section*{R + ZSD}

ZSD is a 2-element integer vector containing the number of rows and columns on the screen, or in the USER window.

For asynchronous terminals under UNIX, the screen size is taken from the terminal database terminfo or termcap.

In window implementations of Dyalog APL, \(\square\) SD reports the current size (in characters) of the USER window or the current size of the SM object, whichever is appropriate.

\section*{Session Namespace:}

DSE
ZSE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth) define the appearance and behaviour of the APL Session window and may be customised to suit individual requirements.

ZSE is maintained separately from the active workspace and is not affected by ) LOAD or ) CLEAR. It is therefore useful for containing utility functions. The contents of DSE may be saved in and loaded from a .DSE file.

See User Guide for further details.

\section*{Execute (UNIX) Command: \(\{R\}-\) DSH Y}

ZSH executes a UNIX shell or a Windows Command Processor. ZSH is a synonym of CCMD . Either function may be used in either environment (UNIX or Windows) with exactly the same effect. ZSH is probably more natural for the UNIX user. This section describes the behaviour of CSH and DCMD under UNIX. See "Execute Windows Command: " on page 398 for a discussion of the behaviour of these system functions under Windows.

Y must be a simple character scalar or vector representing a UNIX shell command. R is a nested vector of character vectors.

Y may be any acceptable UNIX command. It could cause another process to be entered, such as sed or vi. If the command does not return a result, \(R\) is \(c^{\prime}\) ' but the result is suppressed if not explicitly used or assigned. If the command has a non-zero exit code, then APL will signal a DOMAIN ERROR. If the command returns a result and has a zero exit code, then each element of \(R\) will be a line from the standard output (stdout) of the command. Output from standard error (stderr) is not captured unless redirected to stdout.

\section*{Examples}

DSH'ls'
FILES WS temp
ZSH 'rm WS/TEST'

ПSH 'grep bin /etc/passwd ; exit \(0^{\prime}\) bin:!:2:2::/bin:

DSH 'apl MYWS <inputfile >out1 2>out2 \&'

\section*{Start UNIX Auxiliary Processor: X DSH Y}

Used dyadically, ZSH starts an Auxiliary Processor. The effect, as far as the APL user is concerned, is identical under both Windows and UNIX although there are differences in the method of implementation. ZSH is a synonym of \(\bar{C} C M D\). Either function may be used in either environment (UNIX or Windows) with exactly the same effect. ZSH is probably more natural for the UNIX user. This section describes the behaviour of DSH and DCMD under UNIX. See "Start Windows Auxiliary Processor: " on page 400 for a discussion of the behaviour of these system functions under Windows.
\(X\) must be a simple character vector. \(Y\) may be a simple character scalar or vector, or a nested character vector.

USH loads the Auxiliary Processor from the file named by \(X\) using a search-path defined by the environment variable WSPATH.

The effect of starting an AP is that one or more external functions are defined in the workspace. These appear as locked functions and may be used in exactly the same way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped to the AP for processing. If the function returns a result, APL halts while the AP is processing and waits for the result. If not it continues processing in parallel.

The syntax of dyadic DSH is similar to the UNIX execl(2) system call, where 'taskname' is the name of the auxiliary processor to be executed and arg0 through argn are the parameters of the calling line to be passed to the task, viz.
'taskname' ZSH 'argO' 'arg1' ... 'argn'
See User Guide for further information.

\section*{Examples}
```

'xutils' DSH 'xutils' 'ss' 'dbr'
'/bin/sh' पSH 'sh' '-c' 'adb test'

```

\section*{State Indicator:}

\section*{\(R+\square S I\)}
\(R\) is a nested vector of vectors giving the names of the functions or operators in the execution stack.

\section*{Example}
```

)SI
 \#.PLUS[2]*
\#.MATDIV[4]
\#.FOO[1]*
\$
ZSI
PLUS MATDIV FOO
(\rho\squareLC) = \rho\SI
1

```

If execution stops in a callback function, \(\quad \mathrm{DQ}\) will appear on the stack, and may occur more than once
\(\quad\) ISI
\#. ERRFN[7]*
ПDQ
\#.CALC
DDQ
\#.MAIN

To edit the function on the top of the stack:
ZED っDSI

The name of the function which called this one:
\[
\supset 1 \downarrow \square S I
\]

To check if the function \(\Delta N\) is pendent:
\[
((c \Delta N) \in 1 \downarrow \square S I) / ' W a r n i n g: \quad \text { : } \Delta N, ' \text { is pendent' }
\]

See also "Extended State Indicator: " on page 653.

\section*{Shadow Name:}

\section*{ZSHADOW Y}
\(Y\) must be a simple character scalar, vector or matrix identifying one or more APL names. For a vector Y , names are separated by one or more blanks. For a matrix Y , each row is taken to be a single name.

Each valid name in \(Y\) is shadowed in the most recently invoked defined function or operator, as though it were included in the list of local names in the function or operator header. The class of the name becomes 0 (undefined). The name ceases to be shadowed when execution of the shadowing function or operator is completed. Shadow has no effect when the state indicator is empty.

If a name is ill-formed, or if it is the name of a system constant or system function, DOMAIN ERROR is reported.

If the name of a top-level GUI object is shadowed, it is made inactive.

\section*{Example}

ZVR'RUN'
\(\nabla\) NAME RUN FN
[1] \(\quad\) R RUNS FUNCTION NAMED <NAME> DEFINED
[2] a FROM REPRESENTATION FORM <FN>
[3] DSHADOW NAME
[4] \(\pm \square F \mathrm{X} \mathrm{FN}\)
\(\nabla\)
O DSTOP 'RUN'
'FOO' RUN 'RャFOO' 'R<10'
10
RUN[0]
)SINL
\#.RUN[0]* FOO FN NAME
\(\rightarrow \square \mathrm{LC}\)
FOO
VALUE ERROR
FOO
\(\wedge\)

\section*{Signal Event: \\ \{X\}ZSIGNAL Y}
\(Y\) must be a scalar or vector.
If \(Y\) is a an empty vector nothing is signalled.
If \(Y\) is a vector of more than one element, all but the first element are ignored.
If the first element of \(Y\) is a simple integer in the range 1-999 it is taken to be an event number. X is an optional text message. If present, X must be a simple character scalar or vector, or an object reference. If \(X\) is omitted or is empty, the standard event message for the corresponding event number is assumed. See "APL Error Messages" on page 683. If there is no standard message, a message of the form ERROR NUMBER \(n\) is composed, where n is the event number in Y . Values outside the range 1-999 will result in a DOMAIN ERROR.

If the first element of \(Y\) is a 2 column matrix or a vector of 2 element vectors of name/values pairs, then it is considered to be a set of values to be used to override the default values in a new instance of \(D D M X\). Any other value for the first element of \(Y\) will result in a DOMAIN ERROR.

The names in the error specification must all appear in a system-generated [DMX, otherwise a DOMAIN ERROR will be issued. For each name specified, the default value in the new instance of DDMX is replaced with the value specified. EN must be one of the names in the error specification. Attempting to specify certain names, including InternalLocation and DM, will result in a DOMAIN ERROR. The value which is to be assigned to a name must be appropriate to the name in question.

Dyalog may enhance CDMX in future, thus potentially altering the list of valid and/or assignable names.

If the first element of \(Y\) is an array of name/value pairs then specifying any value for \(X\) will result in a DOMAIN ERROR.

The effect of the system function is to interrupt execution. The state indicator is cut back to exit from the function or operator containing the line that invoked DSIGNAL or the Execute ( \(\Phi\) ) expression that invoked DSIGNAL, and an error is then generated.

An error interrupt may be trapped if the system variable DTRAP is set to intercept the event. Otherwise, the standard system action is taken (which may involve cutting back the state indicator further if there are locked functions or operators in the state indicator). The standard event message is replaced by the text given in \(X\), if present.

\section*{Example}
[VR'DIVIDE'
\(\nabla\) R \(\leftarrow A\) DIVIDE B;DTRAP
[1] DTRAP \(\leftarrow 11\) 'E' \(\rightarrow E R R^{\prime}\)
[2] \(\quad R \leftarrow A \div B \diamond \rightarrow 0\)
[3] ERR:'DIVISION ERROR' USIGNAL 11
\(\nabla\)
246 DIVIDE 0
DIVISION ERROR
\(\wedge^{2} 46\) DIVIDE 0
If you are using the Microsoft .Net Framework, you may use DSIGNAL to throw an exception by specifying a value of 90 in Y . In this case, if you specify the optional left argument \(X\), it must be a reference to a .Net object that is or derives from the Microsoft .Net class System.Exception. The following example illustrates a constructor function CTOR that expects to be called with a value for DIO ( 0 or 1)
```

 \nabla CTOR IO;EX
 [1] :If IO\inO 1
[2] DIO<IO
[3] :Else
[4] EX\&ArgumentException.New'IO must be 0 or 1'
[5] EX DSIGNAL 90
[6] :EndIf
\nabla

```

\section*{Further examples}

\section*{Example 1}
'Hello'DSIGNAL 200
Hello
'Hello'DSIGNAL 200
\(\wedge\)
[DMX
EM Hello
Message
HelpURL
DDM
Hello 'Hello'DSIGNAL 200 ^
```

 \SIGNALcc('EN' 200)
 ERROR 200
DSIGNALcc('EN' 200)
^
\squareDMX
EM ERROR 200
Message
HelpURL
DDM
ERROR 200 \squareSIGNALcc('EN' 200) ^

```

\section*{Example 2}

पSIGNALc('EN' 200)('Vendor' 'Andy')('Message' 'My error')
ERROR 200: My error
    ZSIGNALc('EN' 200)('Vendor' 'Andy')('Message' 'My error')
    \(\wedge\)
        —DMX
    EM ERROR 200
Message My error
HelpURL
    -ПDMX.(EN EM Vendor)
        200
ERROR 200
    Andy

Be aware of the following case, in which the argument has not been sufficiently nested:
```

 ZSIGNALc('EN' 200)
 DOMAIN ERROR: Unexpected name in signalled DDMX specification
ZSIGNALc('EN' 200)
^

```

\section*{Size of Object:}

\section*{\(R \leftarrow \square S I Z E \quad Y\)}
\(Y\) must be a simple character scalar, vector or matrix, or a vector of character vectors containing a list of names. \(R\) is a simple integer vector of non-negative elements with the same length as the number of names in \(Y\).

If the name in \(Y\) identifies an object with an active referent, the workspace required in bytes by that object is returned in the corresponding element of \(R\). Otherwise, 0 is returned in that element of \(R\).

The result returned for an external variable is the space required to store the external array. The result for a system constant, variable or function is 0 . The result returned for a GUI object gives the amount of workspace needed to store it, but excludes the space required for its children.

Note: Wherever possible, Dyalog APL shares the whole or part of a workspace object rather than generates a separate copy; however \(\square\) SIZE reports the size as though nothing is shared. ZSIZE also includes the space required for the interpreter's internal information about the object in question.

\section*{Examples}

DVR 'FOO'
\(\nabla\) R \(\leftarrow\) FOO
[1] \(\quad R \leftarrow 10\)
\(\nabla\)
```

 A&r10
 'EXT/ARRAY' DXT'E' \diamond E\leftarrowz20
 ZSIZE 'A' 'FOO' 'E' 'UND'
 28 76 120 0

```

ZSM is a system variable that defines a character-based user interface (as opposed to a graphical user interface). In versions of Dyalog APL that support asynchronous terminals, ZSM defines a form that is displayed on the USER SCREEN. The implementation of CSM in "window" environments is compatible with these versions. In Dyalog APL/X, पSM occupies its own separate window on the display, but is otherwise equivalent. In versions of Dyalog APL with GUI support, ISM either occupies its own separate window (as in Dyalog APL/X) or, if it exists, uses the window assigned to the SM object. This allows \(\square S M\) to be used in a GUI application in conjunction with other GUI components.

In general \(\square S M\) is a nested matrix containing between 3 and 13 columns. Each row of DSM represents a field; each column a field attribute.

The columns have the following meanings:
\begin{tabular}{|l|l|l|}
\hline Column & Description & Default \\
\hline 1 & Field Contents & N/A \\
\hline 2 & Field Position - Top Row & N/A \\
\hline 3 & Field Position - Left Column & N/A \\
\hline 4 & Window Size - Rows & 0 \\
\hline 5 & Window Size - Columns & 0 \\
\hline 6 & Field Type & 0 \\
\hline 7 & Behaviour & 0 \\
\hline 8 & Video Attributes & 0 \\
\hline 9 & Active Video Attributes & -1 \\
\hline 10 & Home Element - Row & 1 \\
\hline 11 & Home Element - Column & 1 \\
\hline 12 & Scrolling Group - Vertical & 0 \\
\hline 13 & Scrolling Group - Horizontal & 0 \\
\hline
\end{tabular}

With the exception of columns 1 and 8 , all elements in \(\square\) SM are integer scalar values.

Elements in column 1 (Field Contents) may be:
- A numeric scalar
- A numeric vector
- A 1-column numeric matrix
- A character scalar
- A character vector
- A character matrix (rank 2)
- A nested matrix defining a sub-form whose structure and contents must conform to that defined for \(\square S M\) as a whole. This definition is recursive. Note however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be:
- An integer scalar that specifies the appearance of the entire field.
- An integer array of the same shape as the field contents. Each element specifies the appearance of the corresponding element in the field contents.

\section*{Screen Management (DOS \& Async Terminals)}

Dyalog APL for UNIX systems (Async terminals) manages two screens; the SESSION screen and the USER screen. If the SESSION screen is current, an assignment to \(\operatorname{DSM}\) causes the display to switch to the USER screen and show the form defined by DSM.

If the USER screen is current, any change in the value of \(\square S M\) is immediately reflected by a corresponding change in the appearance of the display. However, an assignment to \(\square S M\) that leaves its value unchanged has no effect.

Dyalog APL automatically switches to the SESSION screen for default output, if it enters immediate input mode ( 6 -space prompt), or through use of \(\square\) or \(\square\). This means that typing
\[
\square S M \leftarrow \text { expression }
\]
in the APL session will cause the screen to switch first to the USER screen, display the form defined by \(\bar{S} M\), and then switch back to the SESSION screen to issue the 6space prompt. This normally happens so quickly that all the user sees is a flash on the screen.

To retain the USER screen in view it is necessary to issue a call to \(\square S R\) or for APL to continue processing. e.g.
\[
\square S M \leftarrow \text { expression } \diamond \quad \text { OSR } 1
\]
or
```

ZSM \leftarrow expression \diamond पDL 5

```

\section*{Screen Management (Window Versions)}

In Dyalog APL/X, and optionally in Dyalog APL/W, पSM is displayed in a separate USER WINDOW on the screen. In an end-user application this may be the only Dyalog APL window. However, during development, there will be a SESSION window, and perhaps EDIT and TRACE windows too.

The USER Window will only accept input during execution of \(\square S R\). It is otherwise "output-only". Furthermore, during the execution of \(\overline{2} R\) it is the only active window, and the SESSION, EDIT and TRACE Windows will not respond to user input.

\section*{Screen Management (GUI Versions)}

In versions of Dyalog APL that provide GUI support, there is a special SM object that defines the position and size of the window to be associated with पSM. This allows character-mode applications developed for previous versions of Dyalog APL to be migrated to and integrated with GUI environments without the need for a total re-write.

\section*{Effect of Localisation}

Like all system variables (with the exception of \(\square\) TRAP) पSM is subject to "passthrough localisation". This means that a localised \(\square S M\) assumes its value from the calling environment. The localisation of \(\square S M\) does not, of itself therefore, affect the appearance of the display. However, reassignment of a localised \(\square S M\) causes the new form to overlay rather than replace whatever forms are defined further down the stack. The localisation of \(\square S M\) thus provides a simple method of defining pop-up forms, help messages, etc.

The user may edit the form defined by \(\overline{Z S M}\) using the system function \(\operatorname{DSR}\). Under the control of \(\square S R\) the user may change the following elements in \(\square S M\) which may afterwards be referenced to obtain the new values.
\begin{tabular}{ll} 
Column 1 & Field Contents \\
Column 10 & Home Element - Row (by scrolling vertically) \\
Column 11 & Home Element - Column (by scrolling horizontally)
\end{tabular}

\section*{Screen Read: \(R+\{X\} \square S R \quad Y\)}

ZSR is a system function that allows the user to edit or otherwise interact with the form defined by ZSM.

In versions of Dyalog APL that support asynchronous terminals, if the current screen is the SESSION screen, DSR immediately switches to the USER SCREEN and displays the form defined by DSM.

In Dyalog APL/X, पSR causes the input cursor to be positioned in the USER window. During execution of \(\overline{2} R\), only the USER Window defined by \(\square S M\) will accept input and respond to the keyboard or mouse. The SESSION and any EDIT and TRACE Windows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined. This object defines the size and position of the \(\square S M\) window, and allows \(\square S M\) to be used in conjunctions with other GUI components. In these versions, ZSR acts as a superset of DDQ (see "Dequeue Events: " on page 420) but additionally controls the character-based user interface defined by ZSM .
\(Y\) is an integer vector that specifies the fields which the user may visit. In versions with GUI support, Y may additionally contain the names of GUI objects with which the user may also interact.

If specified, X may be an enclosed vector of character vectors defining EXIT_KEYS or a 2 -element nested vector defining EXIT_KEYS and the INITIAL_CONTEXT.

The result R is the EXIT_CONTEXT.
Thus the 3 uses of \(\square S R\) are:
```

EXIT_CONTEXT+\squareSR FIELDS
EXIT_CONTEXT\leftarrow(cEXIT_KEYS)DSR FIELDS
EXIT_CONTEXT\leftarrow(EXIT_KEYS)(INITIAL_CONTEXT)\SR FIELDS

```

\section*{FIELDS}

If an element of \(Y\) is an integer scalar, it specifies a field as the index of a row in पSM (if \(\square S M\) is a vector it is regarded as having 1 row).

If an element of \(Y\) is an integer vector, it specifies a sub-field. The first element in \(Y\) specifies the top-level field as above. The next element is used to index a row in the form defined by \(\triangle \square S M[Y[1] ; 1]\) and so forth.

If an element of \(Y\) is a character scalar or vector, it specifies the name of a top-level GUI object with which the user may also interact. Such an object must be a "toplevel" object, i.e. the Root object ('. ') or a F orm or pop-up Menu. This feature is implemented ONLY in versions of Dyalog APL with GUI support.

\section*{EXIT_KEYS}

Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for the keyboard. If the user presses one of these keys, \(\square S R\) will terminate and return a result.

If EXIT_KEYS is not specified, it defaults to:
'ER' 'EP' 'QT'
which (normally) specifies \(<\) Enter \(>,<\) Esc \(>\) and \(<\) Shift + Esc \(>\).

\section*{INITIAL_CONTEXT}

This is a vector of between 3 and 6 elements with the following meanings and defaults:
\begin{tabular}{|l|l|l|}
\hline Element & Description & Default \\
\hline 1 & Initial Field & N/A \\
\hline 2 & Initial Cursor Position - Row & N/A \\
\hline 3 & Initial Cursor Position - Col & N/A \\
\hline 4 & Initial Keystroke & ' ' \\
\hline 5 & (ignored) & N/A \\
\hline 6 & Changed Field Flags & 0 \\
\hline
\end{tabular}

\section*{Structure of INITIAL_CONTEXT}

INITIAL_CONTEXT[1] specifies the field in which the cursor is to be placed. It is an integer scalar or vector, and must be a member of \(Y\). It must not specify a field which has ÂDÝÝÔÓ behaviour (64), as the cursor is not allowed to enter such a field.

INITIAL_CONTEXT[2 3] are integer scalars which specify the initial cursor position within the field in terms of row and column numbers.

INITIAL_CONTEXT [4] is either empty, or a 2-element character vector specifying the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL_CONTEXT[5] is ignored. It is included so that the EXIT_CONTEXT result of one call to \(\square S R\) can be used as the INITIAL_CONTEXT to a subsequent call.

INITIAL_CONTEXT [6] is a Boolean scalar or vector the same length as \(Y\). It specifies which of the fields in \(Y\) has been modified by the user.

\section*{EXIT_CONTEXT}

The result EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have the same structure as the INITIAL_CONTEXT. Elements 7-9 only apply to those versions of Dyalog APL that provide mouse support.
\begin{tabular}{|l|l|}
\hline Element & Description \\
\hline 1 & Final Field \\
\hline 2 & Final Cursor Position - Row \\
\hline 3 & Final Cursor Position - Col \\
\hline 4 & Terminating Keystroke \\
\hline 5 & Event Code \\
\hline 6 & Changed Field Flags \\
\hline 7 & Pointer Field \\
\hline 8 & Pointer Position - Row \\
\hline 9 & Pointer Position - Col \\
\hline
\end{tabular}

Structure of the Result of DSR
EXIT_CONTEXT [1] contains the field in which the cursor was when \(\square S R\) terminated due to the user pressing an exit key or due to an event occurring. It is an integer scalar or vector, and a member of \(Y\).

EXIT_CONTEXT[ 23 3] are integer scalars which specify the row and column position of the cursor within the field EXIT_CONTEXT [ 1] when [SR terminated.

EXIT_CONTEXT [4] is a 2-element character vector specifying the last keystroke pressed by the user before \(\square S R\) terminated. Unless \(\square S R\) terminated due to an event, EXIT_CONTEXT [4] will contain one of the exit keys defined by X. The keystroke is defined in terms of an Input Translate Table code.

EXIT_CONTEXT [5] contains the sum of the event codes that caused \(\square\) SR to terminate. For example, if the user pressed a mouse button on a Âp ÝÝôó field (event code 64) and the current field has òôçí \(̂\) É \(̇\) Èç behaviour (event code 2) EXIT_ CONTEXT[5] will have the value 66.

EXIT_CONTEXT [6] is a Boolean scalar or vector the same length as Y. It specifies which of the fields in \(Y\) has been modified by the user during this ISR, ORed with INITIAL_CONTEXT[6]. Thus if the EXIT_CONTEXT of one call to \(\square S R\) is fed back as the INITIAL_CONTEXT of the next, EXIT_CONTEXT[6] records the fields changed since the start of the process.

\section*{EXIT_CONTEXT (Window Versions)}

ZSR returns a 9-element result ONLY if it is terminated by the user pressing a mouse button. In this case:

EXIT_CONTEXT [7] contains the field over which the mouse pointer was positioned when the user pressed a button. It is an integer scalar or vector, and a member of \(Y\).

EXIT_CONTEXT[ 8 9 \(]\) are integer scalars which specify the row and column position of the mouse pointer within the field EXIT_CONTEXT [7] when \(\square\) SR terminated.

\section*{Source:}

\section*{R-ZSRC Y}

ZSRC returns the script that defines the scripted object \(Y\).
Y must be a reference to a scripted object. Scripted objects include Classes, Interfaces and scripted Namespaces.
\(R\) is a vector of character vectors containing the script that was used to define \(Y\).
)ed oMyClass
:Class MyClass
\(\nabla r \leftarrow f o o\) arg
:Access public shared
\(r+1+a r g\)
\(\nabla\)
: EndClass
\(z+\square\) SRC MyClass
口z
6
```

\rho"z
14
; Z
:Class MyClass
\nabla r\&foo arg
:Access public shared
r<1+arg
\nabla
:EndClass

```

Note: The only two ways to permanently alter the source of a scripted object are to change the object in the editor, or by refixing it using DF IX. A useful technique to ensure that a scripted object is in sync with its source is to DFIX पSRC object_ reference.

\section*{State Indicator Stack: \\ R+DSTACK}
\(R\) is a two-column matrix, with one row per entry in the State Indicator.
Column 1 : पOR form of user defined functions or operators on the State Indicator. Null for entries that are not user defined functions or operators.

Column 2 :Indication of the type of the item on the stack.
\begin{tabular}{|l|l|}
\hline space & user defined function or operator \\
\hline\(\Phi\) & execute level \\
\hline\(\square\) & evaluated input \\
\hline\(\star\) & desk calculator level \\
\hline\(\square D Q\) & in callback function \\
\hline other & primitive operator \\
\hline
\end{tabular}

\section*{Example}
```

)SI
 \#.PLUS[2]*
\#.MATDIV[4]
\#.FOO[1]*
\Phi

```
\begin{tabular}{|c|c|}
\hline & DSTACK \\
\hline \multicolumn{2}{|l|}{VPLUS} \\
\hline จMATDIV & \\
\hline \multicolumn{2}{|l|}{VFOO} \\
\hline & \(\pm\) \\
\hline & * \\
\hline & مDSTACK \\
\hline
\end{tabular}

82
\[
(\rho \square L C)=1 \uparrow \rho \square S T A C K
\]

Pendent defined functions and operators may be edited in Dyalog APL with no resulting SI damage. However, only the visible definition is changed; the pendent version on the stack is retained until its execution is complete. When the function or operator is displayed, only the visible version is seen. Hence DSTACK is a tool which allows the user to display the form of the actual function or operator being executed.

\section*{Example}

To display the version of MATDIV currently pendent on the stack:
\[
\text { د } \square S T A C K[4 ; 1]
\]
\(\nabla\) R \(\leftarrow A\) MATDIV B
[1] \(\quad\) D Divide matrix \(A\) by matrix \(B\)
[2] \(C \leftarrow A\) 昌 \(B\)
[3] ค Check accuracy
[4] \(D \leftarrow\) L0.5+A PLUS.TIMES B
\(\nabla\)

\section*{State of Object:}

\section*{R-पSTATE Y}

Y must be a simple character scalar or vector which is taken to be the name of an APL object. The result returned is a nested vector of 4 elements as described below.
USTATE supplies information about shadowed or localised objects that is otherwise unobtainable.
\begin{tabular}{|l|l|}
\hline \(1 \supset R\) & \begin{tabular}{l} 
Boolean vector, element set to 1 if and only if this level shadows \(Y\) \\
.Note: \((\rho 1 \supset R)=\rho D L C\)
\end{tabular} \\
\hline \(2 \supset R\) & \begin{tabular}{l} 
Numeric vector giving the stack state of this name as it entered this \\
level. Note: \((\rho 2 \supset R)=\rho \square L C\) \\
\(0=\) not on stack \\
\(1=\) supended \\
\(2=\) pendent (may also be suspended) \\
\(3=\) active (may also be pendent or suspended)
\end{tabular} \\
\hline \(3 \supset R\) & \begin{tabular}{l} 
Numeric vector giving the name classification of \(Y\) as it entered this \\
level. Note: \((\rho 3 \supset R)=+/ 1 \supset R\)
\end{tabular} \\
\hline \(4 \supset R\) & \begin{tabular}{l} 
Vector giving the contents of \(Y\) before it was shadowed at this level. \\
Note: \((\rho 4 \supset R)=+/ 0 \neq 3 \supset R\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Example}
```

 DFMToDOR"'FN1' 'FN2' 'FN3'
 \nabla FN1;A;B;C \nabla FN2;A;C \nabla FN3;A
 [1] A\&1 [1] A\&'HELLO'
[2] B\&2 [2] B\&'EVERYONE'
[3] C
[4] FN2
\nabla
)SI
\#.FN3[2]*
\#.FN2[4]
\#.FN1[4]
qstate 'A'
1111000 2 2 0 HELLO 1
R*\squareSTATE '口TRAP'

```

\section*{Set Stop: \\ \(\{R\}+X\) ISTOP Y}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. X must be a simple non-negative integer scalar or vector. \(R\) is a simple integer vector of non-negative elements. \(X\) identifies the numbers of lines in the function or operator named by \(Y\) on which a stop control is to be placed. Numbers outside the range of line numbers in the function or operator (other than 0 ) are ignored. The number 0 indicates that a stop control is to be placed immediately prior to exit from the function or operator. If X is empty, all existing stop controls are cancelled. The value of X is independent of DIO.
\(R\) is a vector of the line numbers on which a stop control has been placed in ascending order. The result is suppressed unless it is explicitly used or assigned.

\section*{Examples}
```

r(0,r10) ZSTOP 'FOO'

```
01

Existing stop controls in the function or operator named by \(Y\) are cancelled before new stop controls are set:
-1 ZSTOP 'FOO'

1

All stop controls may be cancelled by giving \(X\) an empty vector:
```

\rho'' DSTOP 'FOO'

```

0
\[
\rho \theta \text { ISTOP 'FOO' }
\]

0
Attempts to set stop controls in a locked function or operator are ignored.
\[
\begin{aligned}
& \text { पLOCK'FOO' } \\
& \text { ro } 1 \text { DSTOP'FOO' }
\end{aligned}
\]

The effect of \(\overline{2}\) STOP when a function or operator is invoked is to suspend execution at the beginning of any line in the function or operator on which a stop control is placed immediately before that line is executed, and immediately before exiting from the function or operator if a stop control of 0 is set. Execution may be resumed by a branch expression. A stop control interrupt (1001) may also be trapped - see "Trap Event: " on page 617.

\section*{Example}

DFX'R\&FOO' 'R\&10'
01 ISTOP'FOO'
FOO
FOO[1]
R
VALUE ERROR
R
\(\wedge\)
\(\rightarrow 1\)
FOO[0]
R
10

10

\section*{Query Stop:}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. \(R\) is a simple non-negative integer vector of the line numbers of the function or operator named by Y on which stop controls are set, shown in ascending order. The value 0 in \(R\) indicates that a stop control is set immediately prior to exit from the function or operator.

\section*{Example}

ZSTOP \({ }^{\prime}\) FOO'
01

\section*{Set Access Control: \\ }

This system function sets access control on one or more shared variables.
\(Y\) is a character scalar, vector, or matrix containing names of shared variables. Each name may optionally be paired with its surrogate. If so, the surrogate must be separated from the name by at least one space.
\(X\) may be a 4-element Boolean vector which specifies the access control to be applied to all of the shared variables named in Y . Alternatively, X may be a 4 -column Boolean matrix whose rows specify the access control for the corresponding name in Y . X may also be a scalar or a 1 -element vector. If so, it treated as if it were a 4-element vector with the same value in each element.

Each shared variable has a current access control vector which is a 4-element Boolean vector. A 1 in each of the four positions has the following impact :
\begin{tabular}{|c|l|}
\hline\([1]\) & \begin{tabular}{l} 
You cannot set a new value for the shared variable until after an \\
intervening use or set by your partner.
\end{tabular} \\
\hline [2] & \begin{tabular}{l} 
Your partner cannot set a new value for the shared variable until after \\
an intervening use or set by you.
\end{tabular} \\
\hline [3] & \begin{tabular}{l} 
You cannot use the value of the shared variable until after an \\
intervening set by your partner.
\end{tabular} \\
\hline\([4]\) & \begin{tabular}{l} 
Your partner cannot use the value of the shared variable until after an \\
intervening set by you.
\end{tabular} \\
\hline
\end{tabular}

The effect of \(\square S V C\) is to reset the access control vectors for each of the shared variables named in \(Y\) by OR-ing the values most recently specified by your partner with the values in \(X\). This means that you cannot reset elements of the control vector which your partner has set to 1 .

Note that the initial value of your partner's access control vector is normally 0000 . However, if it is a non-APL client application that has established a hot DDE link, its access control vector is defined to be 1001 . This inhibits either partner from setting the value of the shared variable twice, without an intervening use (or set) by the other. This prevents loss of data which is deemed to be desirable from the nature of the link. (An application that requests a hot link is assumed to require every value of the shared variable, and not to miss any). Note that APL's way of inhibiting another application from setting the value twice (without an intervening use) is to delay the acknowledgement of the DDE message containing the second value until the variable has been used by the APL workspace. An application that waits for an acknowledgement will therefore hang until this happens. An application that does not wait will carry on obliviously.

The result \(R\) is a Boolean vector or matrix, corresponding to the structure of \(X\), which contains the new access control settings. If \(Y\) refers to a name which is not a shared variable, or if the surrogate name is mis-spelt, the corresponding value in \(R\) is \(4 \rho 0\).

\section*{Examples}

1001
\(\begin{array}{lll}1 & 1 \\ 1\end{array}\)

1111
0110

\section*{Query Access Control:}

\section*{R- पSVC Y}

This system function queries the access control on one or more shared variables.
\(Y\) is a character scalar, vector, or matrix containing names of shared variables. Each name may optionally be paired with its surrogate. If so, the surrogate must be separated from the name by at least one space.

If \(Y\) specifies a single name, the result \(R\) is a Boolean vector containing the current effective access control vector. If \(Y\) is a matrix of names, \(R\) is a Boolean matrix whose rows contain the current effective access control vectors for the corresponding row in Y.

For further information, see the preceding section on setting the access control vector.

\section*{Example}

USVC ' \(x\) '
0000

\section*{Shared Variable Offer:}


This system function offers to share one or more variables with another APL workspace or with another application. Shared variables are implemented using Dynamic Data Exchange (DDE) and may be used to communicate with any other application that supports this protocol. See Interface Guide for further details.
\(Y\) is a character scalar, vector or matrix. If it is a vector it contains a name and optionally an external name or surrogate. The first name is the name used internally in the current workspace. The external name is the name used to make the connection with the partner and, if specified, must be separated from the internal name by one or more blanks. If the partner is another application, the external name corresponds to the DDE item specified by that application. If the external name is omitted, the internal name is used instead. The internal name must be a valid APL name and be either undefined or be the name of a variable. There are no such restrictions on the content of the external name.

Instead of an external name, Y may contain the special symbol ' \(\Phi\) ' separated from the (internal) name by a blank. This is used to implement a mechanism for sending DDE_EXECUTE messages, and is described at the end of this section.

If \(Y\) is a scalar, it specifies a single 1-character name. If \(Y\) is a matrix, each row of \(Y\) specifies a name and an optional external name as for the vector case.

The left argument \(X\) is a character vector or matrix. If it is a vector, it contains a string that defines the protocol, the application to which the shared variable is to be connected, and the topic of the conversation. These three components are separated by the characters ': ' and ' \(\mid\) ' respectively. The protocol is currently always 'DDE ', but future implementations of Dyalog APL may support additional communications protocols if applicable. If Y specifies more than one name, X may be a vector or a matrix with one row per row in Y .

If the shared variable offer is a general one (server), \(X\), or the corresponding row of \(X\), should contain 'DDE: '.

The result \(R\) is a numeric scalar or vector with one element for each name in \(Y\) and indicates the "degree of coupling". A value of 2 indicates that the variable is fully coupled (via a warm or hot DDE link) with a shared variable in another APL workspace, or with a DDE item in another application. A value of 1 indicates that there is no connection, or that the second application rejected a warm link. In this case, a transfer of data may have taken place (via a cold link) but the connection is no longer open. Effectively, APL treats an application that insists on a cold link as if it immediately retracts the sharing after setting or using the value, whichever is appropriate.
```

Examples
'DDE:' पSVO 'X'
1
'DDE:' पSVO 'X SALES_92'
1
'DDE:' \squareSVO \uparrow'X SALES_92' 'COSTS_92'
1 1
'DDE:DYALOG|SERV_WS' ZSVO 'X'
2
'DDE:EXCEL|SHEET1' पSVO 'DATA R1C1:R10C12'
2

```

A special syntax is used to provide a mechanism for sending DDE_EXECUTE messages to another application. This case is identified by specifying the ' \(\pm\) ' symbol in place of the external name. The subsequent assignment of a character vector to a variable shared with the external name of ' \(\Phi\) ' causes the value of the variable to be transmitted in the form of a DDE_EXECUTE message. The value of the variable is then reset to 1 or 0 corresponding to a positive or negative acknowledgement from the partner. In most (if not all) applications, commands transmitted in DDE
EXECUTE messages must be enclosed in square brackets [ ]. For details, see the relevant documentation for the external application.

\section*{Examples:}
'DDE:EXCELISYSTEM' ZSVO 'X \({ }^{\prime}\)
2
X ' ' [OPEN("c: \mydir\mysheet.xls")]'
X
1
\(X \nsim '[S E L E C T(" R 1 C 1: R 5 C 10 ")] '\)
\(X\)
1

\section*{Query Degree of Coupling: R-ZSVO Y}

This system function returns the current degree of coupling for one or more shared variables.
\(Y\) is a character scalar, vector or matrix. If it is a vector it contains a shared variable name and optionally its external name or surrogate separated from it by one of more blanks.

If \(Y\) is a scalar, it specifies a single 1-character name. If \(Y\) is a matrix, each row of \(Y\) specifies a name and an optional external name as for the vector case.

If \(Y\) specifies a single name, the result \(R\) is a 1 -element vector whose value 0,1 or 2 indicates its current degree of coupling. If \(Y\) specifies more than one name, \(R\) is a vector whose elements indicate the current degree of coupling of the variable specified by the corresponding row in Y . A value of 2 indicates that the variable is fully coupled (via a warm or hot DDE link) with a shared variable in another APL workspace, or with a DDE item in another application. A value of 1 indicates that you have offered the variable but there is no such connection, or that the second application rejected a warm link. In this case, a transfer of data may have taken place (via a cold link) but the connection is no longer open. A value of 0 indicates that the name is not a shared variable.

\section*{Examples}
```

 \squaresvo 'x'
 2
ZSvo 个'X SALES' 'Y' 'JUNK'
2 10

```

\section*{Shared Variable Query:}

This system function is implemented for compatibility with other versions of APL but currently performs no useful function. Its purpose is to obtain a list of outstanding shared variable offers made to you, to which you have not yet responded.

Using DDE as the communication protocol, it is not possible to implement पSVQ effectively.

\section*{Shared Variable Retract Offer:}

\section*{R-पSVR Y}

This system function terminates communication via one or more shared variables, or aborts shared variable offers that have not yet been accepted.
\(Y\) is a character scalar, vector or matrix. If it is a vector it contains a shared variable name and optionally its external name or surrogate separated from it by one of more blanks. If \(Y\) is a scalar, it specifies a single 1-character name. If \(Y\) is a matrix, each row of \(Y\) specifies a name and an optional external name as for the vector case.

The result \(R\) is vector whose length corresponds to the number of names specified by Y , indicating the level of sharing of each variable after retraction.

See "Shared Variable State: " on page 607 for further information on the possible states of a shared variable.

\section*{Shared Variable State:}

\section*{R-ZSVS Y}

This system function returns the current state of one or more shared variables.
\(Y\) is a character scalar, vector or matrix. If it is a vector it contains a shared variable name and optionally its external name or surrogate separated from it by one of more blanks. If \(Y\) is a scalar, it specifies a single 1-character name. If \(Y\) is a matrix, each row of \(Y\) specifies a name and an optional external name as for the vector case.

If \(Y\) specifies a single name, the result \(R\) is a 4-element vector indicating its current state. If \(Y\) specifies more than one name, \(R\) is a matrix whose rows indicate the current state of the variable specified by the corresponding row in Y .

There are four possible shared variable states:
\begin{tabular}{|llll|l|}
\hline & & & & \begin{tabular}{l} 
means that you and your partner are both aware of the current \\
value, and neither has since reset it. This is also the initial \\
value of the state when the link is first established.
\end{tabular} \\
\hline 1 & 0 & 1 & 1 & 1
\end{tabular}\(|\)

\section*{Examples}
```

 \squareSVS 'X'
 0 1 0 1
ZSVS \uparrow'X SALES' 'Y' 'JUNK'
0 0 1 1
1010
0 0 0 0

```

\section*{Terminal Control: \\ ( DML ) \\ R-पTC}

पTC is a deprecated feature and is replaced by DUCS (see note).
DTC is a simple three element vector. If DML < 3 this is ordered as follows:
\begin{tabular}{|l|l|}
\hline DTC [1] & Backspace \\
\hline DTC[ 2] & Linefeed \\
\hline DTC[3] & Newline \\
\hline
\end{tabular}

Note that \(\bar{T} C=\square A V[D I O+\imath 3]\) for \(\square M L<3\).
If \(\square M L \geq 3\) the order of the elements of \(\square T C\) is instead compatible with IBM's APL2:
\begin{tabular}{|l|l|}
\hline DTC [ 1 ] & Backspace \\
\hline DTC[ 2] & Newline \\
\hline \(\operatorname{DTC}[3]\) & Linefeed \\
\hline
\end{tabular}

Elements of \(\square\) TC beyond 3 are not defined but are reserved.

\section*{Note}

With the introduction of DUCS in Version 12.0, the use of TTC is discouraged and it is strongly recommended that you generate control characters using DUCS instead. This recommendation holds true even if you continue to use the Classic Edition.
\begin{tabular}{|l|l|l|}
\hline Control Character & Old & New \\
\hline Backspace & \(\square T C[1]\) & \(\square U C S ~ 8\) \\
\hline Linefeed & \begin{tabular}{l}
\(\square T C[2] \quad(\square M L<3)\) \\
\(\square T C[3] \quad(\square M L \geq 3)\)
\end{tabular} & DUCS 10 \\
\hline Newline & \begin{tabular}{l}
\(\square T C[3] \quad(\square M L<3)\) \\
\(\square T C[2] \quad(\square M L \geq 3)\)
\end{tabular} & DUCS 13 \\
\hline
\end{tabular}

\section*{Thread Child Numbers:}

\section*{R-DTCNUMS Y}
\(Y\) must be a simple array of integers representing thread numbers.
The result \(R\) is a simple integer vector of the child threads of each thread of \(Y\).

\section*{Examples}

DTCNUMS 0
23
DTCNUMS 23
456789

\section*{Get Tokens:}

\section*{\(\{R\}+\{X\}\) DTGET Y}
\(Y\) must be a simple integer scalar or vector that specifies one or more tokens, each with a specific non-zero token type, that are to be retrieved from the pool.
\(X\) is an optional time-out value in seconds.
Shy result \(R\) is a scalar or vector containing the values of the tokens of type \(Y\) that have been retrieved from the token pool.

Note that types of the tokens in the pool may be positive or negative, and the elements of \(Y\) may also be positive or negative.

A request (ITGET) for a positive token will be satisfied by the presence of a token in the pool with the same positive or negative type. If the pool token has a positive type, it will be removed from the pool. If the pool token has a negative type, it will remain in the pool. Negatively typed tokens will therefore satisfy an infinite number of requests for their positive equivalents. Note that a request for a positive token will remove one if it is present, before resorting to its negative equivalent

A request for a negative token type will only be satisfied by the presence of a negative token type in the pool, and that token will be removed.

If, when a thread calls ZTGET , the token pool satisfies all of the tokens specified by \(Y\), the function returns immediately with a (shy) result that contains the values associated with the pool tokens. Otherwise, the function will block (wait) until all of the requested tokens are present or until a timeout (as specified by X ) occurs.

For example, if the pool contains only tokens of type 2 :
DTGET 24
A blocks waiting for a 4-token ...

The DTGE T operation is atomic in the sense that no tokens are taken from the pool until all of the requested types are present. While this last example is waiting for a 4token, other threads could take any of the remaining 2 -tokens.
Note also, that repeated items in the right argument are distinct. The following will block until there are at least \(3 \times 2\)-tokens in the pool:
```

DTGET 3/2
A wait for 3 x 2-tokens ...

```

The pool is administered on a first-in-first-out basis. This is significant only if tokens of the same type are given distinct values. For example:
```

 OTGET DTPOOL A empty pool.
 'ABCDE'पTPUT``2 2 3 2 3 & pool some tokens.
 r\squareTGET 2 3
 AC
HDTGET 2 3
BE

```

Timeout is signalled by the return of an empty numeric vector \(\theta\) (zilde). By default, the value of a token is the same as its type. This means that, unless you have explicitly set the value of a token to \(\theta\), a DTGET result of \(\theta\) unambiguously identifies a timeout.

Beware - the following statement will wait forever and can only be terminated by an interrupt.
```

QTGET 0 \& wait forever ...

```

Note too that if a thread waiting to \(\square\) TGET tokens is \(\square\) TKILLed, the thread disappears without removing any tokens from the pool. Conversely, if a thread that has removed tokens from the pools is पTK ILLed, the tokens are not returned to the pool.

\section*{R-DTHIS}

DTHIS returns a reference to the current namespace, i.e. to the space in which it is referenced.

If NC9 is a reference to any object whose name-class is 9 , then:
\[
\text { NC9 }=\text { NC9. } \mathrm{\square THIS}
\]

1

\section*{Examples}
\(\square\)
\#
'X'DNS ''
X.DTHIS
\#. X
'F'DWC'Form'
'F.B'DWC'Button'
F.B.DTHIS
\#.F.B
Polly-DNEW Parrot Polly.DTHIS
\#.[Parrot]
An Instance may use DTHIS to obtain a reference to its own Class:
Polly.(っכ口CLASS DTHIS)
\#.Parrot
or a function (such as a Constructor or Destructor) may identify or enumerate all other Instances of the same Class:

1

\section*{Current Thread Identity:}

\section*{R-DTID}
\(R\) is a simple integer scalar whose value is the number of the current thread.

\section*{Examples}
OTID 1 B Base thread number
1 \&\&'ロTID' \(ค\) Thread number of async \(\Phi\).

\section*{\(\{R\}+\{X\} \square T K I L L Y\)}
\(Y\) must be a simple array of integers representing thread numbers to be terminated. \(X\) is a Boolean single, defaulting to 1 , which indicates that all descendant threads should also be terminated.

The shy result \(R\) is a vector of the numbers of all threads that have been terminated.
The base thread 0 is always excluded from the cull.

\section*{Examples}
DTKILL 0
ค Kill background threads.
DTKILL DTID
0 DTKILL DTID
ค Kill self and descendants.
ค Kill self only.
DTKILL DTCNUMS DTID ค Kill descendants.

\section*{Current Thread Name:}

The system variable DTNAME reports and sets the name of the current APL thread. This name is used to identify the thread in the Tracer.

The default value of DTNAME is an empty character vector.
You may set [TNAME to any valid character vector, but it is recommended that control characters (such as \(\square\) AV [DIO] ) be avoided.

\section*{Example:}

DTNAME 'Dylan' \(^{\prime}\)
DTNAME
Dylan

\section*{Thread Numbers:}

DTNUMS reports the numbers of all current threads.
\(R\) is a simple integer vector of the base thread and all its living descendants.

\section*{Example}

DTNUMS
024563789

\section*{Token Pool:}

\section*{R + पTPOOL}
\(R\) is a simple scalar or vector containing the token types for each of the tokens that are currently in the token pool.

The following \((\square M L=0)\) function returns a 2 -column snapshot of the contents of the pool. It does this by removing and replacing all of the tokens, restoring the state of the pool exactly as before. Coding it as a single expression guarantees that snap is atomic and cannot disturb running threads.
```

 snap\leftarrow{(|TGET \omega){(\phi\uparrow\omega \alpha){\alpha}\alpha DTPUT`\omega}\omega}
 snap DTPOOL
 hello world
 2 helloworld
3 2
2 three-type token
2 2

```

\section*{Put Tokens: \\ \(\{R\}+\{X\}\) ITPUT \(Y\)}
\(Y\) must be a simple integer scalar or vector of non-zero token types.
X is an optional array of values to be stored in each of the tokens specified by Y .
Shy result R is a vector of thread numbers (if any) unblocked by the DTPUT.

\section*{Examples}

DTPUT 232 another
```

88 UTPUT 2 A put another 2-token into the pool
this token has the value 88.
'Hello'口TPUT -4 \& put a -4-token into the pool with
the value 'Hello'.

```

If \(X\) is omitted, the value associated with each of the tokens added to the pool is the same as its type.

Note that you cannot put a 0 -token into the pool; 0 -s are removed from Y .

\section*{Set Trace: \\ \(\{R\}+X\) DTRACE \(Y\)}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. X must be a simple non-negative integer scalar or vector.

X identifies the numbers of lines in the function or operator named by Y on which a trace control is to be placed. Numbers outside the range of line numbers in the function or operator (other than 0 ) are ignored. The number 0 indicates that a trace control is to be placed immediately prior to exit from the function or operator. The value of \(X\) is independent of DIO.
\(R\) is a simple integer vector of non-negative elements indicating the lines in the function or operator on which a trace control has been placed.

\section*{Example}
\(+(0, \imath 10)\) पTRACE'FOO'
01
Existing trace controls in the function or operator named by Y are cancelled before new trace controls are set:
\[
\text { + } 1 \text { DTRACE'FOO' }
\]

1
All trace controls may be cancelled by giving \(X\) an empty vector:
\[
\rho \theta \text { DTRACE 'FOO' }
\]

0

Attempts to set trace controls in a locked function or operator are ignored.
```

DLOCK 'FOO'
+1 DTRACE 'FOO'

```

The effect of trace controls when a function or operator is invoked is to display the result of each complete expression for lines with trace controls as they are executed, and the result of the function if trace control 0 is set. If a line contains expressions separated by \(\diamond\), the result of each complete expression is displayed for that line after execution.

The result of a complete expression is displayed even where the result would normally be suppressed. In particular:
- the result of a branch statement is displayed;
- the result (pass-through value) of assignment is displayed;
- the result of a function whose result would normally be suppressed is displayed;

For each traced line, the output from DTRACE is displayed as a two element vector, the first element of which contains the function or operator name and line number, and the second element of which takes one of two forms.
- The result of the line, displayed as in standard output.
- \(\rightarrow\) followed by a line number.

\section*{Example}

> ZVR 'DSL'
\(\nabla\) R*DSL SKIP;A;B;C;D
[1]
\(A+2 \times 3+4\)
[2] \(B \leftarrow\left(23 \rho^{\prime} A B C D E F^{\prime}\right) A\)
[3] \(\rightarrow\) NEXT×rSKIP
[4] 'SKIPPED LINE'
[5] NEXT:C↔'one' \(\diamond D \leftarrow ' t w o '\)
[6] END: \(R+C\) D
\(\nabla\)
\((0,26)\) DTRACE 'DSL'
DSL 1
DSL[1] 14
DSL[2] ABC 14
DEF
DSL[3] \(\rightarrow 5\)
DSL[5] one
DSL[5] two
DSL[6] one two
DSL[0] one two
one two

\section*{Query Trace:}

\section*{R+DTRACE Y}
\(Y\) must be a simple character scalar or vector which is taken to be the name of a visible defined function or operator. \(R\) is a simple non-negative integer vector of the line numbers of the function or operator named by \(Y\) on which trace controls are set, shown in ascending order. The value 0 in \(R\) indicates that a trace control is set to display the result of the function or operator immediately prior to exit.

\section*{Example}

DTRACE'DSL'
0123456

This is a non-simple vector. An item of पTRAP specifies an action to be taken when one of a set of events occurs. An item of DTRAP is a 2 or 3 element vector whose items are simple scalars or vectors in the following order:
1. an integer vector whose value is one or more event codes selected from the list in the Figure on the following two pages.
2. a character scalar whose value is an action code selected from the letters \(C\), \(E, N\) or \(S\).
3. if element 2 is the letter \(C\) or \(E\), this item is a character vector forming a valid APL expression or series of expressions separated by \(\diamond\). Otherwise, this element is omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a control interrupt caused by the ZSTOP system function, or an event generated by the ZSIGNAL system function.
When an event occurs, the system searches for a trap definition for that event. The most local DTRAP value is searched first, followed by successive shadowed values of ITRAP, and finally the global ITRAP value. Separate actions defined in a single OTRAP value are searched from left to right. If a trap definition for the event is found, the defined action is taken. Otherwise, the normal system action is followed.
The ACTION code identifies the nature of the action to be taken when an associated event occurs. Permitted codes are interpreted as follows:
\begin{tabular}{|l|l|l|}
\hline C & Cutback & \begin{tabular}{l} 
The state indicator is 'cut back' to the environment in which \\
the DTRAP is locally defined (or to immediate execution \\
level). The APL expression in element 3 of the same DTRAP \\
item is then executed.
\end{tabular} \\
\hline E & Execute & \begin{tabular}{l} 
The APL expression in element 3 of the same DTRAP item is \\
executed in the environment in which the event occurred.
\end{tabular} \\
\hline N & Next & \begin{tabular}{l} 
The event is excluded from the current DTRAP definition. \\
The search will continue through further localised definitions \\
of DTRAP
\end{tabular} \\
\hline S & Stop & \begin{tabular}{l} 
Stops the search and causes the normal APL action to be \\
taken in the environment in which the event occurred.
\end{tabular} \\
\hline
\end{tabular}

Table 16: Trappable Event Codes
\begin{tabular}{|c|c|}
\hline Code & Event \\
\hline 0 & Any event in range 1-999 \\
\hline 1 & WS FULL \\
\hline 2 & SYNTAX ERROR \\
\hline 3 & INDEX ERROR \\
\hline 4 & RANK ERROR \\
\hline 5 & LENGTH ERROR \\
\hline 6 & VALUE ERROR \\
\hline 7 & FORMAT ERROR \\
\hline 10 & LIMIT ERROR \\
\hline 11 & DOMAIN ERROR \\
\hline 12 & HOLD ERROR \\
\hline 13 & OPTION ERROR \\
\hline 16 & NONCE ERROR \\
\hline 18 & FILE TIE ERROR \\
\hline 19 & FILE ACCESS ERROR \\
\hline 20 & FILE INDEX ERROR \\
\hline 21 & FILE FULL \\
\hline 22 & FILE NAME ERROR \\
\hline 23 & FILE DAMAGED \\
\hline 24 & FILE TIED \\
\hline 25 & FILE TIED REMOTELY \\
\hline 26 & FILE SYSTEM ERROR \\
\hline 28 & FILE SYSTEM NOT AVAILABLE \\
\hline 30 & FILE SYSTEM TIES USED UP \\
\hline 31 & FILE TIE QUOTA USED UP \\
\hline 32 & file Name quota used up \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Code & Event \\
\hline 34 & FILE SYSTEM NO SPACE \\
\hline 35 & FILE ACCESS ERROR - CONVERTING FILE \\
\hline 38 & FILE COMPONENT DAMAGED \\
\hline 52 & FIELD CONTENTS RANK ERROR \\
\hline 53 & FIELD CONTENTS TOO MANY COLUMNS \\
\hline 54 & FIELD POSITION ERROR \\
\hline 55 & FIELD SIZE ERROR \\
\hline 56 & FIELD CONTENTS/TYPE MISMATCH \\
\hline 57 & FIELD TYPE/BEHAVIOUR UNRECOGNISED \\
\hline 58 & FIELD ATTRIBUTES RANK ERROR \\
\hline 59 & FIELD ATTRIBUTES LENGTH ERROR \\
\hline 60 & FULL-SCREEN ERROR \\
\hline 61 & KEY CODE UNRECOGNISED \\
\hline 62 & KEY CODE RANK ERROR \\
\hline 63 & KEY CODE TYPE ERROR \\
\hline 70 & FORMAT FILE ACCESS ERROR \\
\hline 71 & FORMAT FILE ERROR \\
\hline 72 & NO PIPES \\
\hline 76 & PROCESSOR TABLE FULL \\
\hline 84 & TRAP ERROR \\
\hline 90 & EXCEPTION \\
\hline 92 & TRANSLATION ERROR \\
\hline \(200-499\) & Reserved for distributed auxiliary processors \\
\hline & \\
\hline \(500-999\) & User-defined events \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Code & Event \\
\hline 1000 & Any event in range 1001-1008 \\
\hline 1001 & Stop vector \\
\hline 1002 & Weak interrupt \\
\hline 1003 & INTERRUPT \\
\hline 1005 & EOF INTERRUPT \\
\hline 1006 & TIMEOUT \\
\hline 1007 & RESIZE (Dyalog APL/X, Dyalog APL/W) \\
\hline 1008 & DEADLOCK \\
\hline
\end{tabular}

See "Trap Statement" on page 94 as an alternative 'control structured' error trapping mechanism.

\section*{Examples}
```

 DTRAP\leftarrowc(3 4 5) 'E' 'ERROR' \diamond \rhoDTRAP
    ```

1
DTRAP
345 E ERROR
Items may be specified as scalars. If there is only a single trap definition, it need not be enclosed. However, the value of DTRAP will be rigorously correct:
```

 \squareTRAP<11 'E' '->LAB'
 DTRAP
 11 E ->ERR
 \rhoDTRAP
 1

```

The value of DTRAP in a clear workspace is an empty vector whose prototype is \(0 \rho(\theta\) ' ' ' '). A convenient way of cancelling a \(\overline{\mathrm{T}} \mathrm{TRAP}\) definition is:
\[
\square T R A P \div 0 \rho \square T R A P
\]

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 10001006 to be trapped. Specific event codes may be excluded by the N action (which must precede the general event action):
\[
\text { OTRAP } \leftarrow(1 \text { 'N') (O 'E' ' } \rightarrow \text { GENERR') }
\]

The 'stop' action is a useful mechanism for cancelling trap definitions during development of applications.

The 'cut-back' action is useful for returning control to a known point in the application system when errors occur. The following example shows a function that selects and executes an option with a general trap to return control to the function when an untrapped event occurs:
```

[1] A Option selection and execution
[2] A A general cut-back trap
[3] DTRAP\leftarrow(0 1000)'C' '->ERR'
[4] INP:D<'OPTION: '\diamond OPT\leftarrow(OPT\not=' ')/OPT<9\downarrowD
[5] ->EX\rho\ddot{~}(cOPT)\inOptions \diamond 'INVALID OPTION'\diamond >INP
[6] EX:\&OPT \diamond ->INP
[7] ERR:ERROR\triangleACTION \diamond ->INP
[8] END:
\nabla

```

User-defined events may be signalled through the ZSIGNAL system function. A user-defined event (in the range 500-999) may be trapped explicitly or implicitly by the event code 0 .

\section*{Example}

DTRAP \(<500\) 'E' '''USER EVENT 500 - TRAPPED'''
ZSIGNAL 500
USER EVENT 500 - TRAPPED

\section*{Token Requests:}

\section*{R-DTREQ Y}
\(Y\) is a simple scalar or vector of thread numbers.
\(R\) is a vector containing the concatenated token requests for all the threads specified in \(Y\). This is effectively the result of catenating all of the right arguments together for all threads in \(Y\) that are currently executing DTGET.

\section*{Example}

CTREQ DTNUMS \(\quad\) a tokens required by all threads.

This is a seven element vector which identifies the clock time set on the particular installation as follows:
\begin{tabular}{|c|c|}
\hline DTS[1] & Year \\
\hline DTS[2] & Month \\
\hline DTS[3] & Day \\
\hline DTS[4] & Hour \\
\hline DTS[5] & Minute \\
\hline DTS[6] & Second \\
\hline DTS[7] & Millisecond \\
\hline
\end{tabular}

\section*{Example}

DTS
1989711104259123
Note that on some systems, where time is maintained only to the nearest second, a zero is returned for the seventh (millisecond) field.

\section*{Wait for Threads to Terminate: R-ZTSYNC Y}
\(Y\) must be a simple array of thread numbers.
If \(Y\) is a simple scalar, \(R\) is an array, the result (if any) of the thread.
If \(Y\) is a simple non-scalar, \(R\) has the same shape as \(Y\), and result is an array of enclosed thread results.

\section*{Examples}
\(\operatorname{dup} \leftarrow\{\omega \omega\}\)
ค Duplicate
D-dup\&88
a Show thread number

11
8888
DTSYNC dup\&88 \(\quad\) Q Wait for result
8888
DTSYNC, dup\&88
8888
DTSYNC dup\&1 23
123123
DTSYNC dup\&*1 23
112233
Deadlock
The interpreter detects a potential deadlock if a number of threads wait for each other in a cyclic dependency. In this case, the thread that attempts to cause the deadlock issues error number 1008: DEADLOCK.
ZTSYNC DTID
ค Wait for self

DEADLOCK
ZTSYNC DTID

DEN
1008

\section*{Potential Value Error}

If any item of \(Y\) does not correspond to the thread number of an active thread, or if any subject thread terminates without returning a result, then DTSYNC does not return a result. This means that, if the calling context of the DTSYNC requires a result, for example: \(r s l t-\square T S Y N C\) tnums, a VALUE ERROR will be generated. This situation can occur if threads have completed before DTSYNC is called.
\[
\square \leftarrow \div 84
\]

3
0.25
\(\begin{array}{ll}\text { QTSYNC 3 } & \text { a no result required: no prob } \\ \square \text { - } \text { tsync } 3 & \text { a context requires result }\end{array}\)
VALUE ERROR
\(\square+\square\) tsync \(\} \& 0\) ค non-result-returning fn: no
result.
VALUE ERROR
Coding would normally avoid such an inconvenient VALUE ERROR either by arranging that the thread-spawning and DTSYNC were on the same line:
\[
\text { rslt } \leftarrow \text { QTYSYNC myfn\&* argvec }
\]
or
```

tnums<myfn\&* argvec \diamond rslt<\squareTSYNC tnums

```
or by error-trapping the VALUE ERROR.

\section*{Unicode Convert:}

\section*{\(R+\{X\}\) DUCS \(Y\)}

DUCS converts (Unicode) characters into integers and vice versa.
The optional left argument \(X\) is a character vector containing the name of a variablelength Unicode encoding scheme which must be one of:
- 'UTF-8'
- 'UTF-16'
- 'UTF-32'

If not, a DOMAIN ERROR is issued.
If \(X\) is omitted, \(Y\) is a simple character or integer array, and the result \(R\) is a simple integer or character array with the same rank and shape as Y .

If \(X\) is specified, \(Y\) must be a simple character or integer vector, and the result \(R\) is a simple integer or character vector.

\section*{Monadic DUCS}

Used monadically, DUCS simply converts characters to Unicode code points and vice-versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI character set.

DUCS 'Hello World'
\(\begin{array}{lllllllllll}72 & 101 & 108 & 108 & 111 & 32 & 87 & 111 & 114 & 108 & 100\end{array}\)
ZUCS \(211 \rho 7210110810811113287111114108100\)
Hello World
Hello World
The code points for the Greek alphabet are situated in the 900's:
```

 ZUCS 'ка\lambda\eta\mu\varepsiloń\rhoa \varepsilon\\lambdaá\delta'
 954 945 955 951 956 941 961 945 32 949 955 955 940 948

```

Unicode also contains the APL character set. For example:
```

 OUCS 123 40 43 47 9077 41 247 9076 9077 125
 {(+/\omega)\div\rho\omega}

```

\section*{Dyadic DUCS}

Dyadic DUCS is used to translate between Unicode characters and one of three standard variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32. These represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte (UTF-16) and 4-byte (UTF-32) signed integer values respectively.
```

 'UTF-8' DUCS 'ABC'
 656667
'UTF-8' DUCS 'ABCEØÅ'
65 66 67 195 134 195 152 195 133
'UTF-8' IUCS 195 134, 195 152, 195 133
\AA\emptysetÅ
'UTF-8' DUCS 'Y\varepsilonıa \sigmaou'
206 179 206 181 206 185 206 177 32 207 131 206 191 207
133
'UTF-16' DUCS 'Yعıa \sigmaou'
947 949 953 945 32 963 959 965
'UTF-32' ZUCS 'Y\varepsilonıa oou'
947 949 953 945 32 963 959 965

```

Because integers are signed, numbers greater than 127 will be represented as 2-byte integers (type 163), and are thus not suitable for writing directly to a native file. To write the above data to file, the easiest solution is to use DUCS to convert the data to 1-byte characters and append this data to the file:
```

(DUCS 'UTF-8' DUCS 'ABCEØ\AA') DNAPPEND tn

```

Note regarding UTF－16：For most characters in the first plane of Unicode（0000－ FFFF），UTF－16 and UCS－2 are identical．However，UTF－16 has the potential to encode all Unicode characters，by using more than 2 bytes for characters outside plane 1.
```

 'UTF-16' DUCS 'ABCAØÅ巾4'
 6566 67 198 216 197 9042 9035
D-unihan*-DUCS (2*2*16)+\imath3 ค x20001-x20003
ちこ几
'UTF-16' DUCS unihan
55360 5632155360 563225536056323

```

\section*{Translation Error}

ZUCS will generate TRANSLATION ERROR（event number 92）if the argument can－ not be converted．In the Classic Edition，a TRANSLATION ERROR is generated if the result is not in \(\square A V\) or the numeric argument is not in \(\square A V U\) ．

\section*{Using (Microsoft .Net Search Path): \\ ZUSING}

ZUSING specifies a list of Microsoft .Net Namespaces that are to be searched for a reference to a .Net class.

DUS ING is a vector of character vectors, each element of which specifies the name of a .Net Namespace followed optionally by a comma (, ) and the Assembly in which it is to be found.

If a pathname is specified, the file is loaded from that location. Otherwise the system will attempt to load the assembly first from the directory in which the Dyalog program (or host application) is located, and then from the .Net installation directory.

If the Microsoft .Net Framework is installed, the System namespace in mscorlib.dll is automatically loaded when Dyalog APL starts. To access this namespace, it is not necessary to specify the name of the Assembly.

DUS ING has namespace scope. If the local value of DUS ING is anything other than empty, and you reference a name that would otherwise generate a VALUE ERROR, APL searches the list of .Net Namespaces and Assemblies specified by DUSING for a class of that name. If it is found, an entry for the class is added to the symbol table in the current space and the class is used as specified. Note that subsequent references to that class in the current space will be identified immediately.

If DUSING is empty (its default value in a CLEAR WS) no such search is performed.
Note that when you assign a value to DUS ING, you may specify a simple character vector or a vector of character vectors. If you specify a simple character vector (including an empty vector ' ' ), this is equivalent to specifying a 1 -element enclosed vector containing the specified characters. Thus to clear ZUSING, you must set it to \(0 \rho c^{\prime}\) ' and not ' ' .

\section*{Examples:}

DUSING↔'System'
]display ZUSING


ZUSING,ゃc'System.Windows.Forms,System.Windows.Forms.dll' ZUSING, \(\leftarrow\) 'System. Drawing, System.Drawing.dll'

An Assembly may contain top-level classes which are not packaged into .Net Namespaces. In this case, you omit the Namespace name. For example:

DUSING \(\leftarrow, c^{\prime}, . \backslash\) LoanService.dll'

\section*{Vector Representation:}
\(Y\) must be a simple character scalar or vector which represents the name of a function or defined operator.

If \(Y\) is the name of a defined function or defined operator, \(R\) is a simple character vector containing a character representation of the function or operator with each line except the last terminated by the newline character ([TC[3]). Its display form is as follows:
1. the header line starts at column 8 with the \(\nabla\) symbol in column 6 ,
2. the line number for each line of the function starts in column 1 ,
3. the statement contained in each line starts at column 8 except for labelled lines or lines beginning with 9 which start at column 7,
4. the header line and statements contain no redundant blanks beyond column 7 except that the \(\diamond\) separator is surrounded by single blanks, control structure indentation is preserved and comments retain embedded blanks as originally defined,
5. the last line shows only the \(\nabla\) character in column 6 .

If \(Y\) is the name of a variable, a locked function or operator, an external function, or is undefined, R is an empty vector.
```

Example
\rhoV-\squareVR'PLUS'
128
V
\nabla R\&{A}PLUS B
[1] ค MONADIC OR DYADIC +
[2] ->DYADIC\rho\ddot{~}2=\squareNC'A'\diamond R\&B \diamond ->END
[3] DYADIC:R*A+B \diamond ->END
[4] END:
\nabla

```

The definition of DVR has been extended to names assigned to functions by specification \((\leftarrow)\), and to local names of functions used as operands to defined operators. In these cases, the result of \(\square V R\) is identical to that of \(\square C R\) except that the representation of defined functions and operators is as described above.

\section*{Example}
[1]
AVG \(-M E A N \circ\),
\(+F+\square V R^{\prime}{ }^{\prime}\) AVG \(^{\prime}\)
\(\nabla\) R - MEAN \(X \quad\) a Arithmetic mean
[1]
\[
R \leftarrow(+/ X) \div \rho X
\]
\(\nabla \circ\),
pF
3
]display F


\section*{Verify \& Fix Input: \(R+\{X\}\) DVFI \(Y\)}
\(Y\) must be a simple character scalar or vector. \(X\) is optional. If present, \(X\) must be a simple character scalar or vector. \(R\) is a nested vector of length two whose first item is a simple logical vector and whose second item is a simple numeric vector of the same length as the first item of \(R\).
\(Y\) is the character representation of a series of numeric constants. If \(X\) is omitted, adjacent numeric strings are separated by one or more blanks. Leading and trailing blanks and separating blanks in excess of one are redundant and ignored. If \(X\) is present, X specifies one or more alternative separating characters. Blanks in leading and trailing positions in \(Y\) and between numeric strings separated also by the character(s) in \(X\) are redundant and ignored. Leading, trailing and adjacent occurrences of the character(s) in \(X\) are not redundant. The character 0 is implied in \(Y\) before a leading character, after a trailing character, and between each adjacent pair of characters specified by \(X\).

The length of the items of \(R\) is the same as the number of identifiable strings (or implied strings) in \(Y\) separated by blank or the value of \(X\). An element of the first item of \(R\) is 1 where the corresponding string in \(Y\) is a valid numeric representation, or 0 otherwise. An element of the second item of \(R\) is the numeric value of the corresponding string in \(Y\) if it is a valid numeric representation, or 0 otherwise.

\section*{Examples}
```

 IVFI '2 -2 -2'
 101120 -2
 \squareVFI '12.1 1E1 1A1 -10'
 1 1 0 1 12.1 10 0 -10
 ~(//ПVFI'12.1 1E1 1A1 -10')
 12.1 10-10
','\VFI'3.9,2.4,,76,'
111111413.9 2.4 0 76 0
'\diamond'DVFI'1\diamond 2 3\diamond4 '
101 1 0 4
0\equiv\squareVFI''
1

```

\section*{Workspace Available:} \(R-\square W A\)

This is a simple integer scalar. It identifies the total available space in the active workspace area given as the number of bytes it could hold.

A side effect of using DWA is an internal reorganisation of the workspace and process memory, as follows:
1. Any un-referenced memory is discarded. This process, known as garbage collection, is required because whole cycles of refs can become un-referenced.
2. Numeric arrays are demoted to their tightest form. For example, a simple numeric array that happens to contain only values 0 or 1 , is demoted or squeezed to have a DDR type of 11 (Boolean).
3. All remaining used memory blocks are copied to the low-address end of the workspace, leaving a single free block at the high-address end. This process is known as compaction.
4. Workspace above a small amount ( \(1 / 16\) of the configured maximum workspace size) of working memory is returned to the Operating System. On a Windows system, you can see the process size changing by using Task Manager.

\section*{Example}

\section*{DWA}

261412

\section*{Windows Create Object: \(\{R\}-\{X\} \square W C\)}

This system function creates a GUI object. \(Y\) is either a vector which specifies properties that determine the new object's appearance and behaviour, or the DOR of a GUI object that exists or previously existed. X is a character vector which specifies the name of the new object, and its position in the object hierarchy.

If X is omitted, DWC attaches a GUI component to the current namespace, retaining any functions, variables and other namespaces that it may contain. Monadic DWC is discussed in detail at the end of this section.

If \(Y\) is a nested vector each element specifies a property. The Type property (which specifies the class of the object) must be specified. Most other properties take default values and need not be explicitly stated. Properties (including Type) may be declared either positionally or with a keyword followed by a value. Note that Type must always be the first property specified. Properties are specified positionally by placing their values in \(Y\) in the order prescribed for an object of that type.

If \(Y\) is a result of \(\square O R\), the new object is a complete copy of the one from which the ZOR was made, including any child objects, namespaces, functions and variables that it contained at that time.

The shy result \(R\) is the full name (starting \#. or ZSE.) of the namespace \(X\).
An object's name is specified by giving its full pathname in the object hierarchy. At the top of the hierarchy is the Root object whose name is ". ". Below ". " there may be one or more "top-level" objects. The names of these objects follow the standard rules for other APL objects as described in Chapter 1.

Names for sub-objects follow the same rules except that the character ". " is used as a delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :
\begin{tabular}{|l|l|}
\hline Legal & Illegal \\
\hline FORM1 & FORM 1 \\
\hline form_23 & form\#1 \\
\hline Form1.Gp & 11_Form \\
\hline F1.g2.b34 & Form+1 \\
\hline
\end{tabular}

If \(X\) refers to the name of an APL variable, label, function, or operator, a DOMA IN ERROR is reported. If \(X\) refers to the name of an existing GUI object or namespace, the existing one is replaced by the new one. The effect is the same as if it were deleted first.

If \(Y\) refers to a non-existent property, or to a property that is not defined for the type of object \(X\), a DOMAIN ERROR is reported. A DOMAIN ERROR is also reported if a value is given that is inconsistent with the corresponding property. This can occur for example, if \(Y\) specifies values positionally and in the wrong order.

A "top-level" object created by DWC whose name is localised in a function/operator header, is deleted on exit from the function/operator. All objects, including subobjects, can be deleted using DEX.

GUI objects are named relative to the current namespace, so the following examples are equivalent:
'F1.B1' DWC 'Button'
is equivalent to :
)CS F1
\#. F 1
'B1' DWC 'Button'
)CS
\#
is equivalent to :
'B1' F1. DWC 'Button'

\section*{Examples}

ค Create a default Form called F1
'F1' DWC 'Form'
a Create a Form with specified properties (by position)
ค Caption = "My Application" (Title)
ค Posn \(=1030\) ( \(10 \%\) down, \(30 \%\) across)
ค Size \(=8060\) ( \(80 \%\) high, \(60 \%\) wide)
'F1' DWC 'Form' 'My Application' (10 30) (80 60)
```

A Create a Form with specified properties (by keyword)
A Caption = "My Application" (Title)
\rho Posn = 10 30 (10% down, 30% across)
A Size = 80 60 (80% high, 60% wide)
PROPS*c'Type' 'Form'
PROPS,\leftarrowc'Caption' 'My Application'
PROPS,*c'Posn' 10 30
PROPS,*c'Size' }806
'F1' DWC PROPS
\rho Create a default Button (a pushbutton) in the Form F1
'F1.BTN' DWC 'Button'
A Create a pushbutton labelled "Ôk"
a 10% down and 10% across from the start of the FORM
A with callback function FOO associated with EVENT 30
A (this event occurs when the user presses the button)
'F1.BTN'DWC'Button' '\&Ok' (10 10)('Event' 30 'FOO')

```

Monadic IWC is used to attach a GUI component to an existing object. The existing object must be a pure namespace or a GUI object. The operation may be performed by changing space to the object or by running DWC inside the object using the dot syntax. For example, the following statements are equivalent.
) CS F
\#. F
DWC 'Form' \(\rho\) Attach a Form to this namespace
) CS
\#
F.OWC'Form' \(A\) Attach a Form to namespace \(F\)

\section*{Windows Get Property: \(R+\{X\}\) DWG \(Y\)}

This system function returns property values for a GUI object.
\(X\) is a namespace reference or a character vector containing the name of the object. \(Y\) is a character vector or a vector of character vectors containing the name(s) of the properties whose values are required. The result R contains the current values of the specified properties. If \(Y\) specifies a single property name, a single property value is returned. If \(Y\) specifies more than one property, \(R\) is a vector with one element per name in \(Y\).

If \(X\) refers to a non-existent GUI name, a VALUE ERROR is reported. If \(Y\) refers to a non-existent property, or to a property that is not defined for the type of object X , a DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of \(X\) (referring to the namespace in which the function is being evaluated) may be omitted. The following examples are equivalent:
```

'F1.B1' DWG 'Caption'
'B1' F1.DWG 'Caption'
'' F1.B1.|WG 'Caption'
F1.B1.DWG 'Caption'

```

\section*{Examples}
```

 'F1' DWC 'Form' 'TEST'
 'F1' DWG 'Caption'
 TEST
'F1' IWG 'MaxButton'
1
'F1' DWG 'Size'
50 50
]display 'F1' DWG 'Caption' 'MaxButton' 'Size'

```


\section*{Windows Child Names: \\ \(R+\{X\} \square W N Y\)}

This system function reports the Windows objects whose parent is Y .
If \(Y\) is a name (i.e. is a character vector) then the result \(R\) is a vector of character vectors containing the names of the named direct Windows children of Y .

If \(Y\) is a reference then the result \(R\) is a vector of references to the direct Windows children of \(Y\), named or otherwise.

The optional left argument \(X\) is a character vector which specifies the Type of Windows object to be reported; if \(X\) is not specified, no such filtering is performed.

Names of objects further down the tree are not returned, but can be obtained by recursive use of DWN.

If Y refers to a non-existent GUI name, a VALUE ERROR is reported.
Note that DWN reports only those child objects visible from the current thread.
GUI objects are named relative to the current namespace. The following examples are equivalent:
\[
\begin{aligned}
& \square W N \text { 'F1.B1' } \\
& \text { F1. } \square W N \text { 'B1' } \\
& \text { F1.B1. } \mathrm{BWN}
\end{aligned}
\]

\section*{Example}
```

 f - पNEWc'Form'
 f.n + पns'' \(\quad\) A A non-windows object
 f.l\&f. DNEWc'Label' ค A reference to a Label
 'f.b1'Dwc'Button'
 A A named Button
 f.(b2- Dnew c'Button') ค A reference to a
 Button
Dwn 'f'
[Form].b1
Dwn f
\#.[Form].[Label] \#.[Form].b1 \#.[Form].[Button]
'Button' Dwn f
\#.[Form].b1 \#.[Form].[Button]

```

\section*{Windows Set Property: \(\{R\}+\{X\} \square W S Y\)}

This system function resets property values for a GUI object.
\(X\) is a namespace reference or a character vector containing the name of the object. \(Y\) defines the property or properties to be changed and the new value or values. If a single property is to be changed, Y is a vector whose first element \(\mathrm{Y}[1]\) is a character vector containing the property name. If \(Y\) is of length \(2, Y[2]\) contains the corresponding property value. However, if the property value is itself a numeric or nested vector, its elements may be specified in \(Y\left[\begin{array}{llll}2 & 3 & 4 & \ldots\end{array}\right]\) instead of as a single nested element in Y [2]. If Y specifies more than one property, they may be declared either positionally or with a keyword followed by a value. Properties are specified positionally by placing their values in \(Y\) in the order prescribed for an object of that type. Note that the first property in \(Y\) must always be specified with a keyword because the Type property (which is expected first) may not be changed using DWS.

If \(X\) refers to a non-existent GUI name, a VALUE ERROR is reported. If \(Y\) refers to a non-existent property, or to a property that is not defined for the type of object \(X\), or to a property whose value may not be changed by DWS, a DOMA IN ERROR is reported.

The shy result \(R\) contains the previous values of the properties specified in \(Y\).
GUI objects are named relative to the current namespace. A null value of \(X\) (referring to the namespace in which the function is being evaluated) may be omitted. The following examples are equivalent:
```

'F1.B1' DWS 'Caption' '80k'
'B1' F1.DWS 'Caption' '\&0k'
'' F1.B1.DWS 'Caption' '\&Ok'
F1.B1.\squareWS 'Caption' '\&Ok'

```

\section*{Examples}
```

 'F1' DWC 'Form' a A default Form
 'F1' DWS 'Active' 0
 'F1' ZWS 'Caption' 'My Application'
 'F1' DWS 'Posn' O O
 'F1' IWS ('Active' 1)('Event' 'Configure' 'FOO')
 'F1' DWS 'Junk' 10
 'F1' DWS 'MaxButton' 0
    ```
DOMAIN ERROR
DOMAIN ERROR

\section*{Workspace Identification:}

DWSID
This is a simple character vector. It contains the identification name of the active workspace. If a new name is assigned, that name becomes the identification name of the active workspace, provided that it is a correctly formed name.

See "Workspaces" on page 1 for workspace naming conventions.
It is useful, though not essential, to associate workspaces with a specific directory in order to distinguish workspaces from other files.

The value of DWSID in a clear workspace is 'CLEAR WS'.

\section*{Example}

DWSID
CLEAR WS
\[
\begin{array}{ll}
\text { ZWSID\&'WS/MYWORK' } & (\text { UNIX) } \\
\text { ZWSID\&'B:\WS MMYWORK' } & \text { (Windows) }
\end{array}
\]

\section*{Window Expose:}

\section*{DWX}
\(\square W X\) is a system variable that determines:
a. whether or not the names of properties, methods and events provided by a Dyalog APL GUI object are exposed.
b. certain aspects of behaviour of .Net and COM objects.

The permitted values of \(\square W X\) are 0,1 , or 3 . Considered as a sum of bit flags, the first bit in \(\square W X\) specifies (a), and the second bit specifies (b).
If CWX is 1 ( \(1^{\text {st }}\) bit is set), the names of properties, methods and events are exposed as reserved names in GUI namespaces and can be accessed directly by name. This means that the same names may not be used for global variables in GUI namespaces.

If DWX is 0 , these names are hidden and may only be accessed indirectly using ZWG and DWS.

If \(\square W X\) is 3 ( \(2^{\text {nd }}\) bit is also set) COM and .Net objects adopt the Version 11 behaviour, as opposed to the behaviour in previous versions of Dyalog APL.

Note that it is the value of \(\square W X\) in the object itself, rather than the value of \(\square W X\) in the calling environment, that determines its behaviour.

The value of CWX in a clear workspace is defined by the default_wx parameter (see User Guide) which itself defaults to 3 .

IWX has namespace scope and may be localised in a function header. This allows you to create a utility namespace or utility function in which the exposure of objects is known and determined, regardless of its global value in the workspace.

DXML converts an XML string into an APL array or converts an APL array into an XML string.

The optional left argument \(X\) specifies a set of option/value pairs, each of which is a character vector. X may be a 2 -element vector, or a vector of 2-element character vectors.

For conversion from \(\mathrm{XML}, \mathrm{Y}\) is a character vector containing an XML string. The result \(R\) is a 5 column matrix whose columns are made up as follows:
\begin{tabular}{|l|l|}
\hline Column & Description \\
\hline 1 & Numeric value which indicates the level of nesting. \\
\hline 2 & \begin{tabular}{l} 
Element name, other markup text, or empty character vector when \\
empty.
\end{tabular} \\
\hline 3 & Character data or empty character vector when empty. \\
\hline 4 & Attribute name and value pairs, \(\left(\begin{array}{ll}0 & 2 \rho c^{\prime} '\end{array}\right)\) when empty. \\
\hline 5 & A numeric value which indicates what the row contains. \\
\hline
\end{tabular}

The values in column 5 have the following meanings:
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline 1 & Element \\
\hline 2 & Child element \\
\hline 4 & Character data \\
\hline 8 & Markup not otherwise defined \\
\hline 16 & Comment markup \\
\hline 32 & Processing instruction markup \\
\hline
\end{tabular}

\section*{Example}
\[
\begin{aligned}
& x \nleftarrow '<x m l><d o c u m e n t \text { id }=" 001 ">A n \text { introduction to XML' } \\
& x, \leftarrow^{\prime}</ \text { document }></ x m l>' \\
& \text { Idisplay } v \leftarrow \text { पXML } x
\end{aligned}
\]


For conversion to \(\mathrm{XML}, \mathrm{Y}\) is a 3, 4 or 5 column matrix and the result R is a character vector. The columns of \(Y\) have the same meaning as those described above for the result of converting from XML.:

\section*{Example}

DXML v
<xml>
<document id="001">An introduction to XML</document> </xml>

\section*{Introduction to XML and Glossary of Terms}

XML is an open standard, designed to allow exchange of data between applications. The full specification \({ }^{1}\) describes functionality, including processing directives and other directives, which can transform XML data as it is read, and which a full XML processor would be expected to handle.

The DXML function is designed to handle XML to the extent required to import and export APL data. It favours speed over complexity - some markup is tolerated but largely ignored, and there are no XML query or validation features. APL applications which require processing, querying or validation will need to call external tools for this, and finally call DXML on the resulting XML to perform the transformation into APL arrays.

XML grammar such as processing instructions, document type declarations etc may optionally be stored in the APL array, but will not be processed or validated. This is principally to allow regeneration of XML from XML input which contains such structures, but an APL application could process the data if it chose to do so.

The XML definition uses specific terminology to describe its component parts. The following is a summary of the terms used in this section:

\section*{Character Data}

Character data consists of free-form text. The free-form text should not include the characters '>', '<' or ' \(\&\) ', so these must be represented by their entity references ('\&gt;', '\&lt;' and '\&amp;' respectively), or numeric character references.

\section*{Entity References and Character References}

Entity references are named representations of single characters which cannot normally be used in character data because they are used to delimit markup, such as \&gt; for ' \(>\) '. Character references are numeric representations of any character, such as \&\#20; for space. Note that character references always take values in the Unicode code space, regardless of the encoding of the XML text itself.

IXML converts entity references and all character references which the APL character set is able to represent into their character equivalent when generating APL array data; when generating XML it converts any or all characters to entity references as needed.

There is a predefined set of entity references, and the XML specification allows others to be defined within the XML using the <! ENTITY > markup. UXML does not process these additional declarations and therefore will only convert the predefined types.

\footnotetext{
\({ }^{1}\) http://www.w3.org/TR/2008/REC-xml-20081126/
}

\section*{Whitespace}

Whitespace sequences consist of one or more spaces, tabs or line-endings. Within character data, sequences of one or more whitespace characters are replaced with a single space when this is enabled by the whitespace option. Line endings are represented differently on different systems ( \(0 \times 0 \mathrm{D} 0 \times 0 \mathrm{~A}, 0 \times 0 \mathrm{~A}\) and \(0 \times 0 \mathrm{D}\) are all used) but are normalized by converting them all to \(0 x 0 \mathrm{~A}\) before the XML is parsed, regardless of the setting of the whitespace option.

\section*{Elements}

An element consists of a balanced pair of tags or a single empty element tag. Tags are given names, and start and end tag names must match.

An example pair of tags, named TagName is
```

<TagName></TagName>

```

This pair is shown with no content between the tags; this may be abbreviated as an empty element tag as
```

<TagName/>
```

Tags may be given zero or more attributes, which are specified as name/value pairs; for example
```

<TagName AttName="AttValue">

```

Attribute values may be delimited by either double quotes as shown or single quotes (apostrophes); they may not contain certain characters (the delimiting quote, ' \(\mathcal{E}\) ' or ' \(<\) ') and these must be represented by entity or character references.

The content of elements may be zero or more mixed occurrences of character data and nested elements. Tags and attribute names describe data, attribute values and the content within tags contain the data itself. Nesting of elements allows structure to be defined.

Because certain markup which describes the format of allowable data (such as element type declarations and attribute-list declarations) is not processed, no error will be reported if element contents and attributes do not conform to their restricted declarations, nor are attributes automatically added to tags if not explicitly given.

Attributes with names beginning \(\mathbf{x m l}\) : are reserved. Only \(\mathbf{x m l}\) :space is treated specially by DXML . When converting both from and to XML, the value for this attribute has the following effects on space normalization for the character data within this element and child elements within it (unless subsequently overridden):
- default - space normalization is as determined by the whitespace option.
- preserve - space normalization is disabled - all whitespace is preserved as given.
- any other value - rejected.

Regardless of whether the attribute name and value have a recognised meaning, the attribute will be included in the APL array / generated XML. Note that when the names and values of attributes are examined, the comparisons are case-sensitive and take place after entity references and character references have been expanded.

\section*{Comments}

Comments are fully supported markup. They are delimited by ' \(<!--\) ' and '-->' and all text between these delimiters is ignored. This text is included in the APL array if markup is being preserved, or discarded otherwise.

\section*{CDATA Sections}

CDATA Sections are fully supported markup. They are used to delimit text within character data which has, or may have, markup text in it which is not to be processed as such. They and are delimited by ' \(<\) ![CDATA[' and ‘]]>'. CDATA sections are never recorded in the APL array as markup when XML is processed - instead, that data appears as character data. Note that this means that if you convert XML to an APL array and then convert this back to XML, CDATA sections will not be regenerated. It is, however, possible to generate CDATA sections in XML by presenting them as markup.

\section*{Processing Instructions}

Processing Instructions are delimited by ' \(<\&\) ' and ' \(\&>\) ' but are otherwise treated as other markup, below.

\section*{Other markup}

The remainder of XML markup, including document type declarations, XML declarations and text declarations are all delimited by ' \(<\) !' and ' \(>\) ', and may contain nested markup. If markup is being preserved the text, including nested markup, will appear as a single row in the APL array. DXML does not process the contents of such markup. This has varying effects, including but not limited to the following:
- No validation is performed.
- Constraints specified in markup such element type declarations will be ignored and therefore syntactically correct elements which fall outside their constraint will not be rejected.
- Default attributes in attribute-list declarations will not be automatically added to elements.
- Conditional sections will always be ignored.
- Only standard, predefined, entity references will be recognized; entity declarations which define others entity references will have no effect.
- External entities are not processed.

\section*{Conversion from XML}
- The level number in the first column of the result \(R\) is 0 for the outermost level and subsequent levels are represented by an increase of 1 for each level. Thus, for
- <xml><document id="001">An introduction to XML </document></xml>
- The \(x m l\) element is at level 0 and the document id element is at level 1 . The text within the document id element is at level 2.
- Each tag in the XML contains an element name and zero or more attribute name and value pairs, delimited by ' \(<\) ' and ' \(>\) ' characters. The delimiters are not included in the result matrix. The element name of a tag is stored in column 2 and the attribute(s) in column 4.
- All XML markup other than tags are delimited by either ' \(<\) !' and ' \(>\) ', or ' \(<\) ?' and ' \(>\) ' characters. By default these are not stored in the result matrix but the markup option may be used to specify that they are. The elements are stored in their entirety, except for the leading and trailing ' \(<\) ' and ' \(>\) ' characters, in column 2. Nested constructs are treated as a single block. Because the leading and trailing ' \(<\) ' and ' \(>\) ' characters are stripped, such entries will always have either '!' or ' \(\&\) ' as the first character.
- Character data itself has no tag name or attributes. As an optimisation, when character data is the sole content of an element, it is included with its parent rather than as a separate row in the result. Note that when this happens, the level number stored is that of the parent; the data itself implicitly has a level number one greater.
- Attribute name and value pairs associated with the element name are stored in the fourth column, in an ( \(\left.\begin{array}{lll}x & 2\end{array}\right)\) matrix of character values, for the \(n\) (including zero) pairs.
- Each row is further described in the fifth column as a convenience to simplify processing of the array (although this information could be deduced). Any given row may contain an entry for an element, character data, markup not otherwise defined, a comment or a processing instruction. Furthermore, an element will have zero or more of these as children. For all types except elements, the value in the fifth column is as shown above. For elements, the value is computed by adding together the value of the row itself (1) and those of its children. For example, the value for a row for an element which contains one or more sub-elements and character data is \(7-\) that is 1 (element \()+2\) (child element) +4 (character data). It should be noted that:
- Odd values always represent elements. Odd values other than 1 indicate that there are children.
- Elements which contain just character data (5) are combined into a single row as noted previously.
- Only immediate children are considered when computing the value. For example, an element which contains a sub-element which in turn contains character data does not itself contain the character data.
- The computed value is derived from what is actually preserved in the array. For example, if the source XML contains an element which contains a comment, but comments are being discarded, there will be no entry for the comment in the array and the fifth column for the element will not indicate that it has a child comment.

\section*{Conversion to XML}

Conversion to XML takes an array with the format described above and generates XML text from it. There are some simplifications to the array which are accepted:
- The fifth column is not needed for XML generation and is effectively ignored. Any numeric values are accepted, or the column may be omitted altogether.
- If there are no attributes in a particular row then the ( \(02 \rho c^{\prime \prime}\) ) may be abbreviated as \(\theta\) (zilde). If the fifth column is omitted then the fourth column may also be omitted altogether.
- Data in the third column and attribute values in the fourth column (if present) may be provided as either character vectors or numeric values. Numeric values are implicitly formatted as if DPP was set to 17 .

The following validations are performed on the data in the array:
- All elements within the array are checked for type.
- Values in column 1 must be non-negative and start from level 0 , and the increment from one row to the next must be \(\leq+1\).
- Tag names in column 2 and attribute names in column 4 (if present) must conform to the XML name definition.

Then, character references and entity references are emitted in place of characters where necessary, to ensure that valid XML is generated. However, markup, if present, is not validated and it is possible to generate invalid XML if care in not taken with markup constructs.

\section*{Options}

There are 3 option names which may be specified in the optional left argument \(X\); whitespace, markup, and unknown-entity whose possible values are summarised below. Note that the default value is shown first in bold text, and that the option names and values are case-sensitive.

Errors detected in the input arrays or options will all cause DOMAIN ERROR.

\section*{whitespace}

When converting from XML whitespace specifies the default handling of white space surrounding and within character data. When converting to XML whitespace specifies the default formatting of the XML. Note that attribute values are not comprised of character data so whitespace in attribute values is always preserved.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Converting from XML } \\
\hline strip & \begin{tabular}{l} 
All leading and trailing whitespace sequences are removed; \\
remaining whitespace sequences are replaced by a single space \\
character.
\end{tabular} \\
\hline trim & \begin{tabular}{l} 
All leading and trailing whitespace sequences are removed; all \\
remaining whitespace sequences are handled as preserve.
\end{tabular} \\
\hline preserve & \begin{tabular}{l} 
Whitespace is preserved as given except that line endings are \\
represented by Linefeed (ロUCS 10).
\end{tabular} \\
\hline Converting to XML \\
\hline strip & \begin{tabular}{l} 
All leading and trailing whitespace sequences are removed; \\
remaining whitespace sequences within the data are replaced by \\
a single space character. XML is generated with formatting and \\
indentation to show the data structure.
\end{tabular} \\
\hline trim & Synonymous with strip. \\
\hline preserve & \begin{tabular}{l} 
Whitespace in the data is preserved as given, except that line \\
endings are represented by Linefeed (ロUCS 10). XML is \\
generated with no formatting and indentation other than that \\
which is contained within the data.
\end{tabular} \\
\hline
\end{tabular}
```

]display eg
 <xml>
 <a>
 Data1
 <!-- Comment -->
 Data2
 Data3
 Data4
 <c att="val"/>

</xml>
```
]display 'whitespace' 'strip' \(\square x m l\) eg



\section*{markup}

When converting from XML, markup determines whether markup (other than entity tags) appears in the output array or not. When converting to XML markup has no effect.

\section*{Converting from XML}
\begin{tabular}{|l|l|}
\hline Strip & Markup data is not included in the output array. \\
\hline Preserve & \begin{tabular}{l} 
Markup text appears in the output array, without the leading ' \(<\prime\) \\
and trailing ' \(>\) ' in the tag \(\left(2^{\text {nd }}\right)\) column.
\end{tabular} \\
\hline
\end{tabular}
]display eg
\(\left[\begin{array}{l}\text { <xml }> \\ \text { <a> } \\ \text { Data1 } \\ \text { <! }-- \text { Comment }--> \\ \text { Data2 } \\ \text { <b> Data3 </b> } \\ \text { Data4 } \\ \text { <c att="val" /> } \\ \text { </a> } \\ \text { </xml> }\end{array}\right]\)



\section*{Unknown-entity}

When converting from XML, this option determines what happens when an unknown entity reference, or a character reference for a Unicode character which cannot be represented as an APL character, is encountered; in Classic versions of Dyalog APL that is any Unicode character which does not appear in DAVU. When converting to XML, this option determines what happens to Esc characters (DUCS 27) in data.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Converting from XML } \\
\hline replace & The reference is replaced by a single '?' character. \\
\hline preserve & \begin{tabular}{l} 
The reference is included in the output data as given, but \\
with the leading ‘\&' replaced by Esc (DUCS 27).
\end{tabular} \\
\hline Converting to XML & \\
\hline replace & Esc (QUCS 27) is preserved \\
\hline preserve & Esc (QUCS 27) is replaced by '\&' \\
\hline
\end{tabular}

\section*{Extended State Indicator:} R-DXSI
\(R\) is a nested vector of character vectors giving the full path names of the functions or operators in the execution stack. Note that if a function has changed space, its original (home) space is reported, rather than its current one.

\section*{Example}

In the following, function \(f \circ 0\) in namespace \(x\) has called goo in namespace \(y\). Function goo has then changed space ( DCS ) to namespace \(z\) where it has been suspended:
```

)si
 [z] y.goo[2]*
x.foo[1]

```

DXSI reports the full path name of each function:

Dxsi
\#.y.goo \#.x.foo
This can be used for example, to edit all functions in the stack, irrespective of the current namespace by typing: Ded \(\square \times s i\)

See also "State Indicator: " on page 582.

\section*{Set External Variable: X IXT Y}

Y must be a simple character scalar or vector which is taken to be a variable name. X must be a simple character scalar or vector which is taken to be a file reference. The name given by \(Y\) is identified as an EXTERNAL VARIABLE associated with an EXTERNAL ARRAY whose value may be stored in file identified by X. See User Guide for file naming conventions under Windows and UNIX.

If \(Y\) is the name of a defined function or operator, a label or a namespace in the active workspace, a DOMAIN ERROR is reported.

\section*{Example}
'EXT\ARRAY' DXT 'V'
If the file reference does not exist, the external variable has no value until a value is assigned:
```

 V
 VALUE ERROR
V
^

```

A value assigned to an external variable is stored in file space, not within the workspace:

2261186
\(V \leftarrow r 100000\)
DWA
2261186
There are no specific restrictions placed on the use of external variables. They must conform to the normal requirements when used as arguments of functions or as operands of operators. The essential difference between a variable and an external variable is that an external variable requires only temporary workspace for an operation to accommodate (usually) a part of its value.

\section*{Examples}
\[
\begin{aligned}
& V \leftarrow r 5 \\
& +/ V
\end{aligned}
\]

15
```

 V[3]*C'ABC'
 V
 12 ABC 4 5

```
    \(0^{\rho " V}\)
    3

Assignment allows the structure or the value of an external variable to be changed without fully defining the external array in the workspace.

\section*{Examples}
```

 V,*c2 4\rhor8
 pV
 6
V[6]
1234
5 6 7 8
V[14 2 4 5 5 6}]
times\leftarrow1
v
10 20 ABC 40 50 10 20 30 40
50 60 70 80

```

An external array is (usually) preserved in file space when the name of the external variable is disassociated from the file. It may be re-associated with any valid variable name.

\section*{Example}

DEX'V'
'EXT\ARRAY'DXT'F'

F
\(\begin{array}{llllllll}10 & 20 & A B C & 40 & 50 & 10 & 20 & 30 \\ 50 & 60 & 70 & 80\end{array}\)

In UNIX versions, if \(X\) is an empty vector, the external array is associated with a temporary file which is erased when the array is disassociated.

\section*{Example}
''ロXT'TEMP'
TEMP \(\leftarrow 10\)
+/TEMP×TEMP
385
DEX'TEMP'
An external array may be erased using the native file function: UNERASE.
In a multi-user environment (UNIX or a Windows LAN) a new file associated with an external array is created with access permission for owner read/write. An existing file is opened for exclusive use (by the owner) if the permissions remain at this level. If the access permissions allow any other users to read and write to the file, the file is opened for shared use. In UNIX versions, access permissions may be modified using the appropriate Operating System command, or in Windows using the supplied function XVAR from the UTIL workspace.

\section*{Query External Variable: \\ R-ZXT Y}
\(Y\) must be a simple character scalar or vector which is taken to be a variable name. \(R\) is a simple character vector containing the file reference of the external array associated with the variable named by Y , or the null vector if there is no associated external array.

\section*{Example}

QXT'V'
EXT \({ }^{\text {IARRAY }}\)
\[
\rho D X T^{\prime} G^{\prime}
\]

\section*{Chapter 7:}

\section*{System Commands}

\section*{Introduction}

System commands are not executable APL expressions. They provide services or information associated with the workspace and the external environment.

\section*{Command Presentation}

System commands may be entered from immediate execution mode or in response to the prompt \(\square\) : within evaluated input. All system commands begin with the symbol ), known as a right parenthesis. All system commands may be entered in upper or lower case.

Each command is described in alphabetical order in this chapter.
Table 17: System Commands
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline )CLASSES & List classes \\
\hline )CLEAR & Clear the workspace \\
\hline )CMD Y & Execute a Windows Command \\
\hline )CONTINUE & \begin{tabular}{l} 
Save a Continue workspace and terminate \\
APL
\end{tabular} \\
\hline )COPY \(\{Y\}\) & Copy objects from another workspace \\
\hline\()\) CS \(\{Y\}\) & Change current namespace \\
\hline )DROP \(\{Y\}\) & Drop named workspace \\
\hline )ED Y & Edit object(s) \\
\hline )ERASE Y & Erase object(s) \\
\hline )EVENTS & List events of GUI namespace or object \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Command & Description \\
\hline )FNS \{Y\} & List user defined Functions \\
\hline ) HOLDS & Display Held tokens \\
\hline ) LIB \(\{\mathrm{Y}\}\) & List workspaces in a directory \\
\hline )LOAD \(\{\mathrm{Y}\}\) & Load a workspace \\
\hline )METHODS & List methods in GUI namespace or object \\
\hline )NS \{Y\} & Create a global Namespace \\
\hline )OBJECTS \{Y\} & List global namespaces \\
\hline )OBS \{Y\} & List global namespaces (alternative form) \\
\hline ) OFF & Terminate the APL session \\
\hline )OPS \{Y\} & List user defined Operators \\
\hline )PCOPY \{Y\} & Perform Protected Copy of objects \\
\hline )PROPS & List properties of GUI namespace or object \\
\hline ) RESET & Reset the state indicator \\
\hline )SAVE \{Y\} & Save the workspace \\
\hline )SH \{Y\} & Execute a (UNIX) Shell command \\
\hline ) SI & State Indicator \\
\hline )SIC & Clear State Indicator \\
\hline )SINL & State Indicator with local Name Lists \\
\hline \()\) TID \(\{Y\}\) & Switch current Thread Identity \\
\hline )VARS \(\{Y\}\) & List user defined global Variables \\
\hline )WSID \{Y\} & Workspace Identification \\
\hline )XLOAD Y & Load a workspace; do not execute DLX \\
\hline \multicolumn{2}{|l|}{\(\{\) \} indicates that the parameter(s) denoted by Y are optional.} \\
\hline
\end{tabular}

\section*{List Classes:}

\section*{)CLASSES}

This command lists the names of APL Classes in the active workspace.

\section*{Example:}
```

)CLEAR
 clear ws
)ED OMyClass
:Class MyClass
\nabla Make Name
:Implements Constructor
ODF Name
\nabla
:EndClass ค MyClass
)CLASSES
MyClass
)COPY OO YourClass
.\00 saved Sun Jan 29 18:32:03 2006
)CLASSES
MyClass YourClass
ZNC 'MyClass' 'YourClass'
9.4 9.4

```

This command clears the active workspace and gives the report "c lear ws". The active workspace is lost. The name of a clear workspace is CLEAR WS. System variables are initialised with their default values as described in "System Variables" on page 369.

In GUI implementations of Dyalog APL, ) CLEAR expunges all GUI objects, discards any unprocessed events in the event queue and resets the properties of the Root object '.' to their default values.

\section*{Example}
) CLEAR
clear ws

\section*{Windows Command Processor: \\ )CMD cmd}

This command allows Windows Command Processor or UNIX shell commands to be given from APL. ) CMD is a synonym of ) SH . Either command may be given in either environment (Windows or UNIX) with exactly the same effect. ) CMD is probably more natural for the Windows user. This section describes the behaviour of ) CMD and ) SH under Windows. See "Execute (UNIX) Command: " on page 675 for a discussion of the behaviour of these commands under UNIX.

The system functions \(\square\) CMD and \(\square S H\) provide similar facilities but may be executed from within APL code.

Note that under Windows, you may not execute ) CMD without a command. If you wish to, you can easily open a new Command Prompt window outside APL.

\section*{Example}
) CMD DIR
Volume in drive \(C\) has no label
Directory of C:\PETE\WS
\begin{tabular}{lcccc}
. & & <DIR> & \(5-07-94\) & \(3.02 p\) \\
<DIR> & \(5-07-94\) & \(3.02 p\) \\
SALES & DWS & 110092 & \(5-07-94\) & \(3.29 p\) \\
EXPENSES & DWS & 154207 & \(5-07-94\) & \(3.29 p\)
\end{tabular}

If \(\mathbf{c m d}\) issues prompts and expects user input, it is ESSENTIAL to explicitly redirect input and output to the console. If this is done, APL detects the presence of a " \(>\) " in the command line and runs the command processor in a visible window and does not direct output to the pipe. If you fail to do this your system will appear to hang because there is no mechanism for you to receive or respond to the prompt.

\section*{Example}
)CMD DATE <CON >CON
(Command Prompt window appears)
```

Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

```
(Command Prompt window disappears)

\section*{Implementation Notes}

The argument of )CMD is simply passed to the appropriate command processor for execution and its output is received using an unnamed pipe.

By default, ) CMD will execute the string ('cmd.exe /c', \(Y\) ) where \(Y\) is the argument given to ) CMD. However, the implementation permits the use of alternative command processors as follows:

Before execution, the argument is prefixed and postfixed with strings defined by the APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name of your command processor and any parameters that it requires. The latter specifies a string which may be required. If CMD_PREFIX is not defined, it defaults to the name defined by the environment variable COMSPEC followed by "lc". If COMSPEC is not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If CMD_ POSTFIX is not defined, it defaults to an empty vector.

\section*{Save Continuation:} )CONTINUE

This command saves the active workspace under the name CONTINUE and ends the Dyalog APL session.

When you subsequently start another Dyalog APL session, the CONTINUE workspace is loaded automatically. When a CONTINUE workspace is loaded, the latent expression (if any) is NOT executed.

Note that the values of all system variables (including \(\overline{C S M}\) ) and GUI objects are also saved in CONTINUE.

\section*{Copy Workspace: )COPY \{ws \{nms\}\}}

This command brings all or selected global objects nms from a stored workspace with the given name. A stored workspace is one which has previously been saved with the system command ) SAVE or the system function DSAVE. See "Workspaces" on page 1 for the rules for specifying a workspace name.

If the list of names is excluded, all defined objects (including namespaces) are copied.

If the workspace name identifies a valid, readable workspace, the system reports the workspace name, "s saved" and the date and time when the workspace was last saved.

\section*{Examples}
```

)COPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1992
) COPY TEMP DLX FOO X A.B.C ./TEMP saved Mon Nov 1 14:20:47 1992 not found X

```

Copied objects are defined at the global level in the active workspace. Existing global objects in the active workspace with the same name as a copied object are replaced. If the copied object replaces either a function in the state indicator, or an object that is an operand of an operator in the state indicator, or a function whose left argument is being executed, the original object remains defined until its execution is completed or it is no longer referenced by an operator in the state indicator. If the workspace name is not valid or does not exist or if access to the workspace is not authorised, the system reports ws not found.

You may copy an object from a namespace by specifying its full pathname. The object will be copied to the current namespace in the active workspace, losing its original parent and gaining a new one in the process. You may only copy a GUI object into a namespace that is a suitable parent for that object. For example, you could only copy a Group object from a saved workspace if the current namespace in the active workspace is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports bad ws.

If the source workspace is too large to be loaded, the system reports ws too large.

When copying data between Classic and Unicode Editions, ) COPY will fail with TRANSLATION ERROR if any object in the source workspace fails conversion between Unicode and DAV indices, whether or not that object is specified by nms. See "Atomic Vector - Unicode: " on page 391 for further details.

If "ws" is omitted, the file open dialog box is displayed and all objects copied from the selected workspace.

If the list of names is included, the names of system variables may also be included and copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports not found followed by the name of the object.

If the list of names includes the name of:
- an Instance of a Class but not the Class itself
- a Class but not a Class upon which it depends
- an array or a namespace that contains a ref to another namespace, but not the namespace to which it refers
the dependant object(s) will also be copied but will be unnamed and hidden. In such as case, the system will issue a warning message.

For example, if a saved workspace named CFWS contains a Class named \#. CompFile and an Instance (of CompFile) named icf,
) COPY CFWS icf
. \CFWS saved Fri Mar 03 10:21:36 2006
copied object created an unnamed copy of class \#.CompFile
The existence of a hidden copy can be confusing, especially if it is a hidden copy of an object which had a name which is in use in the current workspace. In the above example, if there is a class called CompFile in the workspace into which icf is copied, the copied instance may appear to be an instance of the visible CompF ile, but it will actually be an instance of the hidden CompFile - which may have very different (or perhaps worse: very slightly different) characteristics to the named version.

If you copy a Class without copying its Base Class, the Class can be used (it will use the invisible copy of the Base Class), but if you edit the Class, you will either be unable to save it because the editor cannot find the Base Class, or - if there is a visible Class of that name in the workspace - it will be used as the Base Class. In the latter case, the invisible copy which was brought in by ) COPY will now disappear, since there are no longer any references to it - and if these two Base Classes were different, the behaviour of the derived Class will change (and any changes made to the invisible Base Class since it was copied will be lost).

\section*{Change Space:}
) CS changes the current space to the global namespace nm.
If no \(n m\) is given, the system changes to the top level (Root) namespace. If \(n m\) is not the name of a global namespace, the system reports the error message Namespace does not exist.
name may be either a simple name or a compound name separated by '. ', including one of the special names ' \#' (Root) or ' \#\#' (Parent).

\section*{Examples}
) CS
\#
) Cs \(x\)
\#. X
)CS Y.Z
\#.X.Y.Z
)CS \#\#
\#.X.Y
)CS \#.UTIL
\#.UTIL
Drop Workspace:
)DROP \{ws\}
This command removes the specified workspace from disk storage. See "Workspaces" on page 1 for information regarding the rules for specifying a workspace name.

If \(w s\) is omitted, a file open dialog box is displayed to elicit the workspace name.

\section*{Example}
)DROP WS/TEMP
Thu Sep 17 10:32:18 1998
) ED invokes the Dyalog APL editor and opens an Edit window for each of the objects specified in nms.

If a name specifies a new symbol it is taken to be a function/operator. However, if a name is localised in a suspended function/operator but is otherwise undefined, it is assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an appropriate symbol as follows:
\begin{tabular}{|l|l|}
\hline\(\nabla\) & function/operator \\
\hline\(\rightarrow\) & simple character vector \\
\hline\(\epsilon\) & vector of character vectors \\
\hline- & character matrix \\
\hline\(\otimes\) & Namespace script \\
\hline\(\odot\) & Class script \\
\hline\(\odot\) & Interface \\
\hline
\end{tabular}

The first object named becomes the top window on the stack. See User Guide for details. ) ED ignores names which specify GUI objects.

\section*{Examples}
)ED MYFUNCTION
)ED \(\nabla F O O\)-MAT \(\in V E C V E C\)

\section*{List Events:}
) EVENTS
The ) EVENTS system command lists the Events that may be generated by the object associated with the current space.

For example:
DCS 'BB' DWC 'BrowseBox'
Close )EVENTS Create FileBoxCancel FileBoxOK
) EVENTS produces no output when executed in a pure (non-GUI) namespace, for example:

DCs 'X' DNS ''
) EVENTS

\section*{List Global Defined Functions: \\ )FNS \{nm\}}

This command displays the names of global defined functions in the active workspace or current namespace. Names are displayed in \(\square A V\) collation order. If a name is included after the command, only those names starting at or after the given name in collation order are displayed.

\section*{Examples}
) FNS
ASK DISPLAY GET PUT ZILCH
)FNS G
GET PUT ZILCH

\section*{Display Held Tokens: ) HOLDS}

System command ) HOLDS displays a list of tokens which have been acquired or requested by the : Hold control structure.

Each line of the display is of the form:
token: acq req req ...
Where acq is the number of the thread that has acquired the token, and req is the number of \(a\) thread which is requesting it. For a token to appear in the display, a thread (and only one thread) must have acquired it, whereas any number of threads can be requesting it.

\section*{Example}

Thread 300's attempt to acquire token 'blue ' results in a deadlock:
```

300:DEADLOCK
Sema4[1]_Hold 'blue'

```
\begin{tabular}{lll} 
& )HOLDS & \\
blue: & 100 & \\
green: & 200 & 100
\end{tabular}
red: 300200
100
- Blue has been acquired by thread 100 .
- Green has been acquired by 200 and requested by 100.
- Red has been acquired by 300 and requested by 200 and 100 .

The following cycle of dependencies has caused the deadlock:
```

Thread 300 attempts to acquire blue,
which is owned by 100,
which is waiting for red, red \leftarrow 100
which is owned by 300.

```

\section*{List Workspace Library: \\ )LIB \{dir\}}

This command lists the names of Dyalog APL workspaces contained in the given directory.

\section*{Example}
)LIB WS

MYWORK TEMP
If a directory is not given, the workspaces on the user's APL workspace path (WSPATH) are listed. In this case, the listing is divided into sections identifying the directories concerned. The current directory is identified as ". ".

\section*{Example}
)LIB


\section*{Load Workspace: )LOAD \{ws\}}

This command causes the named stored workspace to be loaded. The current active workspace is lost.

If "ws" is a full or relative pathname, only the specified directory is examined. If not, the APL workspace path (WSPATH as specified in APL. INI) is traversed in search of the named workspace. A stored workspace is one which has previously been saved with the system command ) SAVE or the system function DSAVE. If ' \(w s\) ' is omitted, the File Open dialog box is displayed.

If the workspace name is not valid or does not exist or if access to the workspace is not authorised, the system reports "ws not found". If the workspace name identifies a file or directory that is not a workspace, the system reports workspace name "is not a ws". If successfully loaded, the system reports workspace name "s aved", followed by the date and time when the workspace was last saved. If the workspace is too large to be loaded into the APL session, the system reports "ws too large". After loading the workspace, the latent expression ( \(\mathbb{L} \mathrm{X}\) ) is executed unless APL was invoked with the -x option.

If the workspace contains any GUI objects whose Visible property is 1 , these objects will be displayed. If the workspace contains a non-empty \(\square S M\) but does not contain an SM GUI object, the form defined by ZSM will be displayed in a window on the screen.

Holding the Ctrl key down while entering a ) LOAD command or selecting a workspace from the session file menu now causes the incoming latent expression to be traced.

Holding the Shift key down while selecting a workspace from the session file menu will prevent execution of the latent expression.

\section*{Example}
)LOAD SMDEMO
/usr/dyalog/WS/SMDEMO saved Wed Sep 6 21:46:27 1989 Type HOWDEMO for help

\section*{List Methods:}

The )ME THODS system command lists the Methods that apply to the object associated with the current space.

For example:
DCS 'F' DWC 'Form'
)METHODS
Animate ChooseFont Detach GetFocus GetTextSize Wait
)METHODS produces no output when executed in a pure (non-GUI) namespace, for example:

DCs 'X' ZNS ''
)METHODS

\section*{Create Namespace:}
) NS creates a global namespace and displays its full name, nm.
nm may be either a simple name or a compound name separated by ' . ', including one of the special names ' \#' (Root) or ' \#\#' (Parent).

If name does not start with the special Root space identifier ' \#' , the new namespace is created relative to the current one.

If name is already in use for a workspace object other than a namespace, the command fails and displays the error message Name already exists.

If name is an existing namespace, no change occurs.
) NS with no nm specification displays the current namespace.

\section*{Examples}
)NS
\#
)NS W.X
\#.W.X
)CS W.X
\#.W.X
)NS Y.Z
\#.W.X.Y.Z
)NS
\#.W.X

\section*{List Global Namespaces: )OBJECTS \{nm\}}

This command displays the names of global namespaces in the active workspace. Names are displayed in the \(\square A V\) collating order. If a name is included after the command, only those names starting at or after the given name in collating order are displayed. Namespaces are objects created using DNS, ) NS or DWC and have name class 9 .

Note: ) OBS can be used as an alternative to ) OBJECTS

\section*{Examples}
FORM1 \begin{tabular}{c} 
OBJECTS \\
UTIL
\end{tabular} WSDOC XREF

WSDOC \(\begin{array}{r}\text { OBS } \\ \text { XREF }\end{array}\)

\section*{List Global Namespaces:}

This command is the same as the )OBJECTS command. See "List Global Namespaces: " above

This command terminates the APL session, returning to the Operating System command processor or shell.

\section*{List Global Defined Operators: \\ )OPS \{nm\}}

This command displays the names of global defined operators in the active workspace or current namespace. Names are displayed in \(\square A V\) collation order. If a name is included after the command, only those names starting at or after the given name in collation order are displayed.

\section*{Examples}
)OPS
AND DOIF DUAL ELSE POWER
)OPS E
ELSE POWER

\section*{Protected Copy: \\ )PCOPY \{ws \{nms\}\}}

This command brings all or selected global objects from a stored workspace with the given name provided that there is no existing global usage of the name in the active workspace. A stored workspace is one which has previously been saved with the system command ) SAVE or the system function DSAVE.
)PCOPY does not copy ZSM. This restriction may be removed in a later release.
If the workspace name is not valid or does not exist or if access to the workspace is not authorised, the system reports "ws not found". If the workspace name identifies a file that is not a workspace, or is a workspace with an invalid version number (one that is greater than the version of the current APL) the system reports "bad ws". See "Workspaces" on page 1 for the rules for specifying a workspace name.

If the workspace name is the name of a valid, readable workspace, the system reports the workspace name, "saved", and the date and time that the workspace was last saved.

If the list of names is excluded, all global defined objects (functions and variables) are copied. If an object is not found in the stored workspace, the system reports "not found" followed by the name of the object. If an object cannot be copied into the active workspace because there is an existing referent, the system reports "not copied" followed by the name of the object.

For further information, see "Copy Workspace: " on page 407.

\section*{Examples}
)PCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied COPIED IF not copied COPIED JOIN
)PCOPY TEMP FOO X
./TEMP saved Mon Nov 1 14:20:47 1993
not found \(X\)

\section*{List Properties: \\ )PROPS}

The )PROPS system command lists the Properties of the object associated with the current space.

For example:
DCS 'BB' DWC 'BrowseBox'
)PROPS
BrowseFor Caption ChildList Data Event EventList HasEdit KeepOnClose MethodList PropList StartIn Target Translate Type
)PROPS produces no output when executed in a pure (non GUI) namespace, for example:
```

Zcs 'X' DNs ''
)PROPS

```

\section*{Reset State Indicator:}
)RESET
This command cancels all suspensions recorded in the state indicator and discards any unprocessed events in the event queue.
) RESET also performs an internal re-organisation of the workspace and process memory. See "Workspace Available: " on page 630 for details.

\section*{Example}
) SI
\#. \(\mathrm{FOO}[1] *\)
\#. \(\mathrm{FOO}[1] *\)
) RESET
) SI

\section*{Save Workspace: )SAVE \{ws\}}

This command compacts (see "Workspace Available: " on page 630 for details) and saves the active workspace

The workspace is saved with its state of execution intact. A stored workspace may subsequently be loaded with the system command ) LOAD or the system function

ILOAD, and objects may be copied from a stored workspace with the system commands ) COPY or ) PCOPY or the system function \(\overline{C C Y}\).

This command may fail with one of the following error messages:
\begin{tabular}{|l|l|}
\hline unacceptable char & \begin{tabular}{l} 
The given workspace name was ill- \\
formed
\end{tabular} \\
\hline not saved this ws is WSID & \begin{tabular}{l} 
An attempt was made to change \\
the name of the workspace for the \\
save, and that workspace already \\
existed.
\end{tabular} \\
\hline not saved this ws is CLEAR WS & \begin{tabular}{l} 
The active workspace was CLEAR \\
WS and no attempt was made to \\
change the name.
\end{tabular} \\
\hline \begin{tabular}{l} 
Can't save - file could not \\
be created.
\end{tabular} & \begin{tabular}{l} 
The workspace name supplied did \\
not represent a valid file name for \\
the current Operating System.
\end{tabular} \\
\hline cannot create & \begin{tabular}{l} 
The user does not have access to \\
create the file OR the workspace \\
name conflicts with an existing \\
non-workspace file.
\end{tabular} \\
\hline cannot save with windows open & \begin{tabular}{l} 
A workspace may not be saved if \\
trace or edit windows are open.
\end{tabular} \\
\hline
\end{tabular}

An existing stored workspace with the same name will be replaced. The active workspace may be renamed by the system command )WSID or the system function UWSID.

After a successful save, the system reports the workspace name, "s aved", followed by the time and date.

\section*{Example}
)SAVE MYWORK
./MYWORK saved Thu Sep 17 10:32:20 1998

\section*{Execute (UNIX) Command: \\ )SH \{cmd\}}

This command allows WINDOWS or UNIX shell commands to be given from APL. ) SH is a synonym of ) CMD. Either command may be given in either environment (WINDOWS or UNIX) with exactly the same effect. ) SH is probably more natural for the UNIX user. This section describes the behaviour of ) SH and ) CMD under UNIX. See "Windows Command Processor: " on page 660 for a discussion of their behaviour under WINDOWS.

The system commands \(\square\) SH and DCMD provide similar facilities but may be executed from within APL code.
) SH allows UNIX shell commands to be given from APL. The argument must be entered in the appropriate case (usually lower-case). The result of the command, if any, is displayed.
) SH causes Dyalog APL to invoke the system () library call. The shell which is used to run the command is therefore the shell which system () is defined to call. For example, under AIX this would be /usr/bin/sh.

When the shell is closed, control returns to APL. See User Guide for further information.

The parameters CMD_PREFIX and CMD_POSTFIX may be used to execute a different shell under the shell associated with system ().

\section*{Example}
)SH ls

EXT
FILES

\section*{State Indicator:} )SI

This command displays the contents of the state indicator in the active workspace. The state indicator identifies those operations which are suspended or pendent for each suspension.

The list consists of a line for each suspended or pendent operation beginning with the most recently suspended function or operator. Each line may be:
- The name of a defined function or operator, followed by the line number at which the operation is halted, and followed by the * symbol if the operation is suspended. The name of the function or operator is its full pathname relative to the root namespace \#. For example, \#.UTIL.PRINT. In addition, the display of a function or operator which has dynamically changed space away from its origin is prefixed with its current space. For example, [DSE] TRAV.
- A primitive operator symbol.
- The Execute function symbol ( \(\ddagger\) ).
- The Evaluated Input symbol ( C ).
- The System Function DDQ or DSR (occurs when executing a callback function).

\section*{Examples}
) SI
\#.PLUS[2]*
.
\#.MATDIV[4]
\#.FOO[1]*
\(\pm\)
This example indicates that at some point function FOO was executed and suspended on line 1. Subsequently, function MATDIV was invoked, with a function derived from the Inner Product or Outer Product operator (.) having defined function PLUS as an operand.

In the following, function \(f \circ \circ\) in namespace \(x\) has called goo in namespace \(y\). Function goo has then changed space ([CS) to namespace \(z\) where it has been suspended:
)si
[z] y.goo[2]*
x.foo[1]

\section*{Threads}

In a multithreading application, where parent threads spawn child threads, the state indicator assumes the structure of a branching tree. Branches of the tree are represented by indenting lines belonging to child threads. For example:
```

)SI
 #.Calc[1]
 \&5
. . \#.DivSub[1]
\&7
\#.DivSub[1]
\&6
\#.Div[2]*
\&4
\#.Sub[3]
\#.Main[4]

```

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Div and Calc. Function Div, after spawning DivSub in each of threads 6 and 7, has been suspended at line [2].

\section*{Clear State Indicator:}

This command is a synonym for ) RESET. See "Reset State Indicator: " on page 673

\section*{State Indicator \& Name List:}

This command displays the contents of the state indicator together with local names. The display is the same as for ) SI (see above) except that a list of local names is appended to each defined function or operator line.

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { )SINL } \\
\text { \#.PLUS[2]* }
\end{gathered}
\] & B & A & R & DYADIC & END \\
\hline \#.MATDIV[4] & R & END & I & J & DTRAP \\
\hline \#.FOO[1]* R & & & & & \\
\hline
\end{tabular}

\section*{Thread Identity: \\ )TID \{tid\}}
) TID associates the Session window with the specified thread so that expressions that you subsequently execute in the Session are executed in the context of that thread.

If you attempt to ) TID to a thread that is paused or running, that thread will, if possible, be interrupted by a strong interrupt. If the thread is in a state which it would be inappropriate to interrupt (for example, if the thread is executing an external function), the system reports:

Can't switch, this thread is \(n\)
If no thread number is given, ) TID reports the number of the current thread.

\section*{Examples}
```

 \rho State indicator
)si
    ```
    \#.print[1]
\& 3
-. \#.sub_calc[2]*
- 82
    \#.calc[1]
\&1
    ค Current thread
    ) tid
is 2
    A Switch suspension to thread 3
    )tid 3
was 2
    ค State indicator
        ) s
    \#.print[1]*
\& 3
- . \#.sub_calc[2]
- 82
- calc[1]
\(\& 1\)
```

 \beta Attempt to switch to pendent thread 1
)tid 1
 Can't switch, this thread is 3

```

\section*{List Global Defined Variables: \\ )VARS \{nm\}}

This command displays the names of global defined variables in the active workspace or current namespace. Names are displayed in DAV collation order. If a name is included after the command, only those names starting at or after the given name in collation order are displayed.

\section*{Examples}

A B F TEMP VAR
) VARS F
F TEMP VAR

\section*{Workspace Identification: )WSID \{ws\}}

This command displays or sets the name of the active workspace.
If a workspace name is not specified, ) WS ID reports the name of the current active workspace. The name reported is the full path name, including directory references.

If a workspace name is given, the current active workspace is renamed accordingly. The previous name of the active workspace (excluding directory references) is reported. See "Workspaces" on page 1 for the rules for specifying a workspace name.

\section*{Examples}
)LOAD WS/TEMP
WS/TEMP saved Thu Sep 17 10:32:19 1998
)WSID
is WS/TEMP
)WSID WS/KEEP
was WS/TEMP
)WSID
WS/KEEP

\section*{Load without Latent Expression: )XLOAD \{ws \}}

This command causes the named stored workspace to be loaded. The current active workspace is lost.
) XLOAD is identical in effect to ) LOAD except that ) XLOAD does not cause the expression defined by the latent expression \(\square L X\) in the saved workspace to be executed.

\section*{Chapter 8:}

\section*{Error Messages}

\section*{Introduction}

The error messages reported by APL are described in this chapter. Standard APL messages that provide information or report error conditions are summarised in "APL Error Messages" on page 683 and described later in alphabetical order.

APL also reports messages originating from the Operating System (WINDOWS or UNIX) which are summarised in "Typical Operating System Error Messages" on page 687 and "Windows Operating System Messages" on page 689. Only those Operating System error messages that might occur through normal usage of APL operations are described in this manual. Other messages could occur as a direct or indirect consequence of using the Operating System interface functions \(\square C M D\) and DSH or system commands ) CMD and ) SH, or when a non-standard device is specified for the system functions DARBIN or DARBOUT. Refer to the WINDOWS or UNIX reference manual for further information about these messages.

Most errors may be trapped using the system variable DTRAP, thereby retaining control and inhibiting the standard system action and error report. The table, " Trappable Event Codes " on page 618 identifies the error code for trappable errors. The error code is also identified in the heading block for each error message when applicable.

See User Guide for a full description of the Error Handling facilities in Dyalog APL.

\section*{Standard Error Action}

The standard system action in the event of an error or interrupt whilst executing an expression is to suspend execution and display an error report. If necessary, the state indicator is cut back to a statement such that there is no halted locked function visible in the state indicator.

The error report consists of up to three lines
1. The error message, preceded by the symbol \(\pm\) if the error occurred while evaluating the Execute function.
2. The statement in which the error occurred (or expression being evaluated by the Execute function), preceded by the name of the function and line number where execution is suspended unless the state indicator has been cut back to immediate execution mode. If the state indicator has been cut back because of a locked function in execution, the displayed statement is that from which the locked function was invoked.
3. The symbol ^ under the last referenced symbol or name when the error occurred. All code to the right of the \({ }^{\wedge}\) symbol in the expression will have been evaluated.

\section*{Examples}

X PLUS U
value error
\(X\) PLUS U
FOO
INDEX ERROR
FOO[2] \(X+X+A[I]\)

CALC
£DOMAIN ERROR
CALC[5] \(\div 0\)
\(\wedge\)

\section*{APL Errors}

Table 18: APL Error Messages
\begin{tabular}{|l|l|}
\hline Error Code & Report \\
\hline & bad ws \\
\hline & cannot create name \\
\hline & clear ws \\
\hline & copy incomplete \\
\hline 1008 & DEADLOCK \\
\hline & defn error \\
\hline 11 & DOMAIN ERROR \\
\hline 1005 & EOF INTERRUPT \\
\hline 90 & FICEPTION \\
\hline 52 & FIELD CONTENTS TOO MANY COLUMNS \\
\hline 53 & FIELD SIZE ERROR \\
\hline 54 & FIELD CONTENTS/TYPE MISMATCH \\
\hline 55 & FIELD ATTRIBUTES RANK ERROR \\
\hline 56 & FIELD ATTRIBUTES LENGTH ERROR \\
\hline 57 & FULL-SCREEN ERROR \\
\hline 58 & KEY CODE UNRECOGNISED \\
\hline 59 & KEY CODE RANK ERROR \\
\hline 60 & FORMAT FILE ACCESS ERROR \\
\hline 61 & 62
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Code & Report \\
\hline 19 & FILE ACCESS ERROR \\
\hline 35 & FILE ACCESS ERROR - CONVERTING FILE \\
\hline 38 & FILE COMPONENT DAMAGED \\
\hline 23 & FILE DAMAGED \\
\hline 21 & FILE FULL \\
\hline 20 & FILE INDEX ERROR \\
\hline 22 & FILE NAME ERROR \\
\hline 32 & FILE NAME QUOTA USED UP \\
\hline 26 & FILE SYSTEM ERROR \\
\hline 34 & FILE SYSTEM NO SPACE \\
\hline 28 & FILE SYSTEM NOT AVAILABLE \\
\hline 30 & FILE SYSTEM TIES USED UP \\
\hline 18 & FILE TIE ERROR \\
\hline 24 & FILE TIED \\
\hline 25 & FILE TIED Remotely \\
\hline 31 & FILE TIE QUOTA USED UP \\
\hline 7 & FORMAT ERROR \\
\hline & incorrect command \\
\hline 12 & HOLD ERROR \\
\hline 3 & INDEX ERROR \\
\hline & insufficient resources \\
\hline 99 & INTERNAL ERROR \\
\hline 1003 & INTERRUPT \\
\hline & is name \\
\hline 5 & LENGTH ERROR \\
\hline 10 & LIMIT ERROR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error Code & Report \\
\hline 16 & NONCE ERROR \\
\hline 72 & NO PIPES \\
\hline & name is not a ws \\
\hline & Name already exists \\
\hline & Namespace does not exist \\
\hline & not copied name \\
\hline & not found name \\
\hline & not saved this ws is name \\
\hline 13 & OPTION ERROR \\
\hline 76 & PROCESSOR TABLE FULL \\
\hline 4 & RANK ERROR \\
\hline 1007 & RESIZE \\
\hline & name saved date/time \\
\hline 2 & SYNTAX ERROR \\
\hline & sys error number \\
\hline 1006 & TIMEOUT \\
\hline & too many names \\
\hline 92 & TRANSLATION ERROR \\
\hline 84 & TRAP ERROR \\
\hline 6 & VALUE ERROR \\
\hline & warning duplicate label \\
\hline & warning duplicate name \\
\hline & warning label name present in line 0 \\
\hline & warning pendent operation \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error Code & Report \\
\hline & warning unmatched brackets \\
\hline & warning unmatched parentheses \\
\hline & was name \\
\hline 1 & WS FULL \\
\hline & ws not found \\
\hline & ws too large \\
\hline
\end{tabular}

\section*{Operating System Error Messages}

Table 19 refers to Unix Operating Systems under which the error code reported by Dyalog APL is ( \(100+\) the Unix file error number). The text for the error message, which is obtained by calling perror (), will vary from one type of system to another.

Table 20 refers to the equivalent error messages under Windows.
Table 19: Typical Operating System Error Messages
\begin{tabular}{|l|l|}
\hline Error Code & Report \\
\hline 101 & FILE ERROR 1 Not owner \\
\hline 102 & FILE ERROR 2 No such file or directory \\
\hline 103 & FILE ERROR 3 No such process \\
\hline 104 & FILE ERROR 4 Interrupted system call \\
\hline 105 & FILE ERROR 5 I/O error \\
\hline 106 & FILE ERROR 6 No such device or address \\
\hline 107 & FILE ERROR 7 Arg list too long \\
\hline 108 & FILE ERROR 8 Exec format error \\
\hline 109 & FILE ERROR 9 Bad file number \\
\hline 110 & FILE ERROR 10 No children \\
\hline 111 & FILE ERROR 11 No more processes \\
\hline 112 & FILE ERROR 12 Not enough code \\
\hline 113 & FILE ERROR 13 Permission denied \\
\hline 114 & FILE ERROR 14 Bad address \\
\hline 115 & FILE ERROR 16 Mount device busy \\
\hline 116 & FILE ERROR 17 File exists \\
\hline 117 & FILE ERROR 18 Cross-device link \\
\hline 118 & FILE ERROR 19 No such device \\
\hline 119 & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error Code & Report \\
\hline 120 & FILE ERROR 20 Not a directory \\
\hline 121 & FILE ERROR 21 Is a directory \\
\hline 122 & FILE ERROR 22 Invalid argument \\
\hline 123 & FILE ERROR 23 File table overflow \\
\hline 124 & FILE ERROR 24 Too many open files \\
\hline 125 & FILE ERROR 25 Not a typewriter \\
\hline 126 & FILE ERROR 26 Text file busy \\
\hline 127 & FILE ERROR 27 File too large \\
\hline 128 & FILE ERROR 28 No space left on device \\
\hline 129 & FILE ERROR 29 Illegal seek \\
\hline 130 & FILE ERROR 30 Read-only file system \\
\hline 131 & FILE ERROR 31 Too many links \\
\hline 132 & FILE ERROR 32 Broken pipe \\
\hline 133 & FILE ERROR 33 Math argument \\
\hline 134 & FILE ERROR 34 Result too large \\
\hline
\end{tabular}

\section*{Windows Operating System Error Messages}

Table 20: Windows Operating System Messages
\begin{tabular}{|l|l|}
\hline Error Code & Report \\
\hline 101 & FILE ERROR 1 No such file or directory \\
\hline 102 & FILE ERROR 2 No such file or directory \\
\hline 103 & FILE ERROR 3 Exec format error \\
\hline 105 & FILE ERROR 5 Not enough memory \\
\hline 106 & FILE ERROR 6 Permission denied \\
\hline 107 & FILE ERROR 7 Argument list too big \\
\hline 108 & FILE ERROR 8 Exec format error \\
\hline 109 & FILE ERROR 9 Bad file number \\
\hline 111 & FILE ERROR 11 Too many open files \\
\hline 112 & FILE ERROR 12 Not enough memory \\
\hline 113 & FILE ERROR 13 Permission denied \\
\hline 114 & FILE ERROR 14 Result too large \\
\hline 115 & FILE ERROR 15 Resource deadlock would occur \\
\hline 117 & FILE ERROR 17 File exists \\
\hline 118 & FILE ERROR 18 Cross-device link \\
\hline 122 & FILE ERROR 22 Invalid argument \\
\hline 123 & FILE ERROR 23 File table overflow \\
\hline 124 & FILE ERROR 24 Too many open files \\
\hline 133 & FILE ERROR 33 Argument too large \\
\hline 134 & FILE ERROR 34 Result too large \\
\hline 145 & FILE ERROR 45 Resource deadlock would occur \\
\hline
\end{tabular}

\section*{APL Error Messages}

There follows an alphabetical list of error messages reported from within Dyalog APL.

\section*{bad ws}

This report is given when an attempt is made to ) COPY or ) PCOPY from a file that is not a valid workspace file. Invalid files include workspaces that were created by a version of Dyalog APL later than the version currently being used.

\section*{cannot create name}

This report is given when an attempt is made to ) SAVE a workspace with a name that is either the name of an existing, non-workspace file, or the name of a workspace that the user does not have permission to overwrite or create.

\section*{clear ws}

This message is displayed when the system command ) CLEAR is issued.

\section*{Example}
) CLEAR
clear ws

\section*{copy incomplete}

This report is given when an attempted ) COPY or ) PCOPY fails to complete. Reasons include:
- Failure to identify the incoming file as a workspace.
- Not enough active workspace to accommodate the copy.

If two threads succeed in acquiring a hold of two different tokens, and then each asks to hold the other token, they will both stop and wait for the other to release its token. The interpreter detects such cases and issues an error (1008) DEADLOCK.

\section*{defn error}

This report is given when either:
- The system editor is invoked in order to edit a function that does not exist, or the named function is pendent or locked, or the given name is an object other than a function.
- The system editor is invoked to define a new function whose name is already active.
- The header line of a function is replaced or edited in definition mode with a line whose syntax is incompatible with that of a header line. The original header line is re-displayed by the system editor with the cursor placed at the end of the line. Back-spacing to the beginning of the line followed by linefeed restores the original header line.

\section*{Examples}
\(x+1\)
\(\nabla \mathrm{X}\)
defn error
\(\mathrm{\nabla FOO}\) [0]]
[0] \(\quad \mathrm{R} \leftarrow \mathrm{FOO}\)
[0] \(R \leftarrow F O O: X\)
defn error
[0] \(\mathrm{R} \leftarrow \mathrm{FOO}: \mathrm{X}\)
DLOCK \({ }^{\prime}\) FOO'
\(\mathrm{\nabla FOO}\) [D]
defn error

\section*{DOMAIN ERROR 11}

This report is given when either:
- An argument of a function is not of the correct type or its numeric value is outside the range of permitted values or its character value does not constitute valid name(s) in the context.
- An array operand of an operator is not an array, or it is not of the correct type, or its numeric value is outside the range of permitted values. A function operand of an operator is not one of a prescribed set of functions.
- A value assigned to a system variable is not of the correct type, or its numeric value is outside the range of permitted values
- The result produced by a function includes numeric elements which cannot be fully represented.

\section*{Examples}
\(1 \div 0\)
DOMAIN ERROR
\(1 \div 0\)
\(\wedge\)
(xo'CAT')2 46
DOMAIN ERROR
(×O'CAT')2 46

DIO \(<5\)
DOMAIN ERROR
DIO \(\leftarrow 5\)

\section*{EOF INTERRUPT}

This report is given on encountering the end-of-file when reading input from a file. This condition could occur when an input to APL is from a file.

This report is given when a Microsoft .Net object throws an exception. For details see "Exception: " on page 426.

\section*{FIELD CONTENTS RANK ERROR 52}

This report is given if a field content of rank greater than 2 is assigned to \(\square S M\).

\section*{FIELD CONTENTS TOO MANY COLUMNS 53}

This report is given if the content of a numeric or date field assigned to \(\square S M\) has more than one column.

This report is given if the location of the field assigned to \(\square S M\) is outside the screen.

\section*{FIELD CONTENTS TYPE MISMATCH 56}

This report is given if the field contents assigned to \(\square S M\) does not conform with the given field type e.g. character content with numeric type.

\section*{FIELD TYPE BEHAVIOUR UNRECOGNISED}

This report is given if the field type or behaviour code assigned to \(\square S M\) is invalid.

\section*{FIELD ATTRIBUTES RANK ERROR}

This report is given if the current video attribute assigned to \(\square S M\) is non-scalar but its rank does not match that of the field contents.

\section*{FIELD ATTRIBUTES LENGTH ERROR}

This report is given if the current video attribute assigned to DSM is non-scalar but its dimensions do not match those of the field contents.

This report is given if the required full screen capabilities are not available to \(\quad\) SM. This report is only generated in UNIX environments.

\section*{KEY CODE UNRECOGNISED 61}

This report is given if a key code supplied to पSR or पPFKEY is not recognised as a valid code.

\section*{KEY CODE RANK ERROR 62}

This report is given if a key code supplied to पSR or DPFKEY is not a scalar or a vector.

\section*{KEY CODE TYPE ERROR}

This report is given if a key code supplied to पSR or पPFKEY is numeric or nested; i.e. is not a valid key code.

\section*{FORMAT FILE ACCESS ERROR}

This report is given if the date format file to be used by DSM does not exist or cannot be accessed.

\section*{FORMAT FILE ERROR}

This report is given if the date format file to be used by पSM is ill-formed.

\section*{FILE ACCESS ERROR 19}

This report is given when the user attempts to execute a file system function for which the user is not authorised, or has supplied the wrong passnumber. It also occurs if the file specified as the argument to DFERASE or DFRENAME is not exclusively tied.

\section*{Examples}
```

 'SALES' DFSTIE 1
 DFRDAC 1
 04121 0
04137 99
X Ofreplace 1
FILE ACCESS ERROR
X DFREPLACE 1
'SALES' DfERASE 1
FILE ACCESS ERROR
'SALES' DfERASE 1
^

```

\section*{FILE ACCESS ERROR CONVERTING}

When a new version of Dyalog APL is used, it may be that improvements to the component file system demand that the internal structure of component files must alter. This alteration is performed by the interpreter on the first occasion that the file is accessed. If the operating system file permissions deny the ability to perform such a restructure, this report is given.

This report is given if an attempt is made to access a component that is not a valid APL object. This will rarely occur, but may happen as a result of a previous computer system failure. Components files may be checked using qfsck. (See User Guide.)
FILE DAMAGED ..... 23

This report is given if a component file becomes damaged. This rarely occurs but may result from a computer system failure. Components files may be checked using qfsck. (See User Guide.)
FILE FULL ..... 21

This report is given if the file operation would cause the file to exceed its file size
 limit.

This report is given when an attempt is made to reference a non-existent component.

\section*{Example}

DFSIZE 1
121165784294967295
DFREAD 134
FILE INDEX ERROR
DFREAD 134
CFDROP 150
FILE INDEX ERROR
\(\underset{\wedge}{\square} \mathrm{FDROP} 150\)
FILE NAME ERROR
This report is given if:
- the user attempts to DFCREATE using the name of an existing file.
- the user attempts to DFTIE or DFSTIE a non-existent file, or a file that is not a component file.
- the user attempts to CFERASE a component file with a name other than the EXACT name that was used when the file was tied.

\section*{FILE NAME QUOTA USED UP 32}

This report is given when the user attempts to execute a file system command that would result in the User's File Name Quota (see User Guide) being exceeded.

This can occur with DFCREATE, DFTIE, DFSTIE or DFRENAME .

\section*{FILE SYSTEM ERROR 26}

This report is given if the File System Control Block (FSCB) is removed or altered while files are tied.

Contact the System Administrator. If this occurs when a file is share-tied, the file may be damaged. It is therefore advisable to check the integrity of all such files using qfsck .

See User Guide for details.

\section*{FILE SYSTEM NO SPACE}

This report is given if the user attempts a file operation that cannot be completed because there is insufficient disk space.

\section*{FILE SYSTEM NOT AVAILABLE}

This report is given if the File System Control Block (FSCB) is missing or inaccessible. See User Guide for details.

This report is given if the File System Control Block (FSCB) is full. See User Guide for details.
FILE TIE ERROR existent external variables.

\section*{Examples}

> SALES
DFNAMES, DFNUMS
COSTS 2
PROFIT 3
\(X\) DFAPPEND 4
FILE TIE ERROR X DFAPPEND 4 \(\wedge\)
'NEWSALES' DfCREATE 2
file tie error 'NEWSALES' DfCREATE 2
\(\wedge\)
'EXTVFILE' ZXT'BIGMAT' DFHOLD 'BIGMAT'
FILE TIE ERROR
DFHOLD 'BIGMAT'
DFHOLDc'BIGMAT'18

This report is given when the argument to a file system function contains a file tie number used as if it were tied when it is not or as if it were available when it is already tied. It also occurs if the argument to DF HOLD contains the names of non-

This report is given if the user attempts to tie a file that is exclusively tied by another task, or attempts to exclusively tie a file that is already share-tied by another task.

\section*{FILE TIED REMOTELY}

This report is given if the user attempts to tie a file that is exclusively tied by another task, or attempts to exclusively tie a file that is already share-tied by another task; and that task is running on other than the user's processor.

\section*{FILE TIE QUOTA USED UP 31}

This report is given if an attempt is made to DFTIE, DFSTIE or DFCREATE a file when the user already has the maximum number of files tied. (See File Tie Quota, User Guide)

\section*{FORMAT ERROR}

This report is given when the format specification in the left argument of system function DFMT is ill-formed.

Example
'A1,1X,I5'口fMT CODE NUMBER
FORMAT ERROR
'A1,1X,I5'DFMT CODE NUMBER
(The correct specification should be ' \(\mathrm{A} 1, \mathrm{X} 1, \mathrm{I} 5\) ' .)

\section*{HOLD ERROR}

This report is given when an attempt is made to save a workspace using the system function DSAVE if any external arrays or component files are currently held (as a result of a prior use of the system function DF HOLD).
```

Example
\nablaHOLDASAVE
[1] DFHOLD 1
[2] DSAVE 'TEST'
\nabla
'file' Dfstie 1
HOLDASAVE
HOLD ERROR
HOLD\triangleSAVE[2] [^^\SAVE'TEST'

```

\section*{incorrect command}

This report is given when an unrecognised system command is entered.

\section*{Example}
) CLERA
incorrect command

\section*{INDEX ERROR}

This report is given when either:
- The value of an index, whilst being within comparison tolerance of an integer, is outside the range of values defined by the index vector along an axis of the array being indexed. The permitted range is dependent on the value of DIO.
- The value specified for an axis, whilst being within comparison tolerance of an integer for a derived function requiring an integer axis value or a noninteger for a derived function requiring a non-integer, is outside the range of values compatible with the rank(s) of the array argument(s) of the derived function. Axis is dependent on the value of DIO.

\section*{Examples}

A
123
456
A[1;4]
INDEX ERROR
\(A[1 ; 4]\)
\(\wedge\)


\section*{INTERNAL ERROR 99}

INTERNAL ERROR indicates a severe system error from which Dyalog APL has recovered.

Should you encounter INTERNAL ERROR, Dyalog strongly recommends that you save your work(space), and report the issue.

\section*{INTERRUPT}

This report is given when execution is suspended by entering a hard interrupt. A hard interrupt causes execution to suspend as soon as possible without leaving the environment in a damaged state.

\section*{Example}
\[
112 \phi(2100 \rho \imath 200) \circ . \mid ? 1000 \rho 200
\]
(Hard interrupt)
```

INTERRUPT
112 ¢ ¢(2 100\rho\imath200)\circ.|?1000p200

```

This report is given in response to the system command ) WSID when used without a parameter. name is the name of the active workspace including directory references given when loaded or named. If the workspace has not been named, the system reports is CLEAR WS.

\section*{Example}
)WSID
is WS/UTILITY
LENGTH ERROR but the ranks do conform.

\section*{Example}
\[
23+456
\]
LENGTH ERROR
\(23+456\)5

This report is given when the shape of the arguments of a function do not conform,

\section*{LIMIT ERROR}

This report is given when a system limit is exceeded. System limits are installation dependent.

\section*{Example}
(16p1) 1
LIMIT ERROR
(16p1) p1

\section*{NONCE ERROR}

This report is given when a system function or piece of syntax is not currently implemented but is reserved for future use.

\section*{NO PIPES}

72

This message applies to the UNIX environment ONLY.
This message is given when the limit on the number of pipes communicating between tasks is exceeded. An installation-set quota is assigned for each task. An associated task may require more than one pipe. The message occurs on attempting to exceed the account's quota when either:
- An APL session is started
- A non-APL task is started by the system function ZSH
- An external variable is used.

It is necessary to release pipes by terminating sufficient tasks before proceeding with the required activity. In practice, the error is most likely to occur when using the system function DSH.

\section*{Examples}
'via' ZSH 'via'
NO PIPES
\({ }^{\prime}\) via' DSH 'via'
```

'EXt/ARRAY' DXT 'EXVAR'

```

NO PIPES
'EXT/ARRAY' \({ }_{\wedge}^{\text {■XT }}\) 'EXVAR'

\section*{name is not a ws}

This report is given when the name specified as the parameter of the system commands ) LOAD, ) COPY or ) PCOPY is a reference to an existing file or directory that is not identified as a workspace.

This will also occur if an attempt is made to ) LOAD a workspace that was ) SAVE'd using a later version of Dyalog APL.

\section*{Example}
)LOAD EXT \begin{tabular}{r} 
EARRAY \\
EXT \(\backslash\) ARRAY is not a ws
\end{tabular}

\section*{Name already exists}

This report is given when an ) NS command is issued with a name which is already in use for a workspace object other than a namespace.

\section*{Namespace does not exist}

This report is given when a ) CS command is issued with a name which is not the name of a global namespace.

\section*{not copied name}

This report is given for each object named or implied in the parameter list of the system command ) PCOPY which was not copied because of an existing global referent to that name in the active workspace.

\section*{Example}
)PCOPY WS/UTILITY A FOO Z
WS/UTILITY saved Mon Nov 1 13:11:19 1993 not copied Z

\section*{not found name}

This report is given when either:
- An object named in the parameter list of the system command )ERASE is not erased because it was not found or it is not eligible to be erased.
- An object named in the parameter list (or implied list) of names to be copied from a saved workspace for the system commands ) COPY or )PCOPY is not copied because it was not found in the saved workspace.

\section*{Examples}
) ERASE DIO
not found DIO
) COPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993 not found UND

\section*{not saved this ws is name}

This report is given in the following situations:
- When the system command ) SAVE is used without a name, and the workspace is not named. In this case the system reports not saved this ws is CLEAR WS.
- When the system command ) SAVE is used with a name, and that name is not the current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

\section*{Examples}
```

)CLEAR
) SAVE
 not saved this ws is CLEAR WS
)WSID JOHND
)SAVE
)WSID ANDYS
)SAVE JOHND
not saved this ws is ANDYS

```

\section*{OPTION ERROR} 13

This report is given when an invalid right operand is given to the Variant operator \({ }^{\circ}\) or DOPT.

\section*{PROCESSOR TABLE FULL}

This report can only occur in a UNIX environment.
This report is given when the limit on the number of processes (tasks) that the computer system can support would be exceeded. The limit is installation dependent. The report is given when an attempt is made to initiate a further process, occurring when an APL session is started.

It is necessary to wait until active processes are completed before the required task may proceed. If the condition should occur frequently, the solution is to increase the limit on the number of processes for the computer system.

\section*{Example}
'prefect' DSH 'prefect'
PROCESSOR TABLE FULL
'prefect' DSH 'prefect'

\section*{RANK ERROR}

\section*{4}

This report is given when the rank of an argument or operand does not conform to the requirements of the function or operator, or the ranks of the arguments of a function do not conform.

\section*{Example}
```

 2 3 + 2 2p10 11 12 13
    ```
RANK ERROR
    \(23+22 \rho 10111213\)

This report is given when the user resizes the \(\bar{D}\) SM window. It is only applicable to Dyalog APL/X and Dyalog APL/W.

\section*{name saved date time}

This report is given when a workspace is saved, loaded or copied.
date/time is the date and time at which the workspace was most recently saved.
Examples
)LOAD WS/UTILITY
WS/UTILITY saved Fri Sep 11 10:34:35 1998
) COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

\section*{SYNTAX ERROR}

This report is given when a line of characters does not constitute a meaningful statement. This condition occurs when either:
- An illegal symbol is found in an expression.
- Brackets, parentheses or quotes in an expression are not matched.
- Parentheses in an expression are not matched.
- Quotes in an expression are not matched.
- A value is assigned to a function, label, constant or system constant.
- A strictly dyadic function (or derived function) is used monadically.
- A monadic function (or derived function) is used dyadically.
- A monadic or dyadic function (or derived function) is used without any arguments.
- The operand of an operator is not an array when an array is required.
- The operand of an operator is not a function (or derived function) when a function is required.
- The operand of an operator is a function (or derived function) with incorrect valency.
- A dyadic operator is used with only a single operand.
- An operator is used without any operands.

\section*{Examples}
```

 A>10)/A
 SYNTAX ERROR
A>10)/A
^
T2 4 8
SYNTAX ERROR
T2 4 8
A.+1 2 3
SYNTAX ERROR
A.+1 2 3
^

```

\section*{sys error number}

This report is given when an internal error occurs in Dyalog APL.
Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX command prompt, or even to kill your processes from another screen. Under WINDOWS it may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

This report is given when the time limit specified by the system variable \(\square R T L\) is exceeded while awaiting input through character input (I) or \(\square S R\).

It is usual for this error to be trapped.
Example
DRTL↔5 ॰ \(\square \leftarrow\) 'RESPOND WITHIN 5 SECONDS: ' \(\downarrow\) R \(-\square\)
RESPOND WITHIN 5 SECONDS:
TIMEOUT
\(\square R T L \leftarrow 5 \diamond \square \nleftarrow\) 'RESPOND WITHIN 5 SECONDS: \(\quad \diamond R \leftarrow \square_{\wedge}^{\square}\)

This report is given when the system cannot convert a character from Unicode to an Atomic Vector index or vice versa. Conversion is controlled by the value of DAVU. Note that this error can occur when you reference a variable whose value has been obtained by reading data from a TCPSocket or by calling an external function. This is because in these cases the conversion to/from DAV is deferred until the value is used.

This report is given when a workspace full condition occurs whilst searching for a definition set for the system variable DTRAP after a trappable error has occurred. It does not occur when an expression in a DTRAP definition is being executed.

\section*{too many names}

This report is given by the function editor when the number of distinct names (other than distinguished names beginning with the symbol \(\overline{\text { ) }}\) ) referenced in a defined function exceeds the system limit of 4096 .

\section*{VALUE ERROR}

This report is given when either:
- There is no active definition for a name encountered in an expression.
- A function does not return a result in a context where a result is required.

\section*{Examples}

X
VALUE ERROR
X
\(\nabla\) HELLO
[1] 'HI THERE'
[2] \(\nabla\)
\(2+\) HELLO
HI THERE
VALUE ERROR
\(2+\) HELLO

\section*{warning duplicate label}

This warning message is reported on closing definition mode when one or more labels are duplicated in the body of the defined function. This does not prevent the definition of the function in the active workspace. The value of a duplicated label is the lowest of the line-numbers in which the labels occur.

\section*{warning duplicate name}

This warning message is reported on closing definition mode when one or more names are duplicated in the header line of the function. This may be perfectly valid. Definition of the function in the active workspace is not prevented. The order in which values are associated with names in the header line is described in "Defined Functions \& Operators" on page 63.

\section*{warning pendent operation}

This report is given on opening and closing definition mode when attempting to edit a pendant function or operator.

\section*{Example}
[0] \(\nabla \mathrm{FOO}\)
[1] GOO
[2] \(\nabla\)
[0] \(\nabla\) GOO
[1] 。
[2] \(\nabla\)
FOO
SYNTAX ERROR
GOO[1]
\(\stackrel{\circ}{\circ}\)
จFOO
warning pendent operation
[0] \(\quad \mathrm{FFOO}\)
[1] GOO
[2] \(\nabla\)
warning pendent operation

\section*{warning label name present}

This warning message is reported on closing definition mode when one or more label names also occur in the header line of the function. This does not prevent definition of the function in the active workspace. The order in which values are associated with names is described in "Defined Functions \& Operators" on page 63.

\section*{warning unmatched brackets}

This report is given after adding or editing a function line in definition mode when it is found that there is not an opening bracket to match a closing bracket, or vice versa, in an expression. This is a warning message only. The function line will be accepted even though syntactically incorrect.

\section*{Example}
[3] \(A[; B[2]+0\)
warning unmatched brackets
[4]

\section*{warning unmatched parentheses}

This report is given after adding or editing a function line in definition mode when it is found that there is not an opening parenthesis to match a closing parenthesis, or vice versa, in an expression. This is a warning message only. The function line will be accepted even though syntactically incorrect.

\section*{Example}
[4] \(\left.\quad X \leftarrow(E>2)^{\wedge} E<10\right) \not f A\)
warning unmatched parentheses
[5]

\section*{was name}

This report is given when the system command )WSID is used with a parameter specifying the name of a workspace. The message identifies the former name of the workspace. If the workspace was not named, the given report is was CLEAR WS.

\section*{Example}
)WSID TEMP
was UTILITY

\section*{WS FULL}

This report is given when there is insufficient workspace in which to perform an operation. Workspace available is identified by the system constant IWA.

The maximum workspace size allowed is defined by the environment variable MAXWS. See User Guide for details.

\section*{Example}

DWAp1. 2
WS FULL
ZWAp1.2

\section*{ws not found}

This report is given when a workspace named by the system commands ) LOAD, ) COPY or ) PCOPY does not exist as a file, or when the user does not have read access authorisation for the file.

\section*{Examples}
)LOAD NOWS
ws not found
) COPY NOWS A FOO X
ws not found

\section*{ws too large}

This report is given when:
- the user attempts to ) LOAD a workspace that needs a greater work area than the maximum that the user is currently permitted.
- the user attempts to ) COPY or ) PCOPY from a workspace that would require a greater work area than the user is currently permitted if the workspace were to be loaded.

The maximum work area permitted is set using the environment variable MAXWS.

\section*{Operating System Error Messages}

There follows a numerically sorted list of error messages emanating from a typical operating system and reported through Dyalog APL.

\section*{FILE ERROR 1 Not owner 101}

This report is given when an attempt is made to modify a file in a way which is forbidden except to the owner or super-user, or in some instances only to a super-user.

\section*{FILE ERROR 2 No such file}

This report is given when a file (which should exist) does not exist, or when a directory in a path name does not exist.

\section*{FILE ERROR 5 I 0 error 105}

This report is given when a physical I/O error occurred whilst reading from or writing to a device, indicating a hardware fault on the device being accessed.

\section*{FILE ERROR 6 No such device}

This report is given when a device does not exist or the device is addressed beyond its limits. Examples are a tape which has not been mounted or a tape which is being accessed beyond the end of the tape.

\section*{FILE ERROR 13 Permission denied}

This report is given when an attempt is made to access a file in a way forbidden to the account.

\section*{FILE ERROR 20 Not a directory}

This report is given when the request assumes that a directory name is required but the name specifies a file or is not a legal name.

\section*{FILE ERROR 21 Is a directory 121}

This report is given when an attempt is made to write into a directory.

\section*{FILE ERROR 23 File table overflow 123}

This report is given when the system limit on the number of open files is full and a request is made to open another file. It is necessary to wait until the number of open files is reduced. If this error occurs frequently, the system limit should be increased.

\section*{FILE ERROR 24 Too many open}

This report is given when the task limit on the number of open files is exceeded. It may occur when an APL session is started or when a shell command is issued to start an external process through the system command पSH. It is necessary to reduce the number of open files. It may be necessary to increase the limit on the number of open files to overcome the problem.

\section*{FILE ERROR 26 Text file busy 126}

This report is given when an attempt is made to write a file which is a load module currently in use. This situation could occur on assigning a value to an external variable whose associated external file name conflicts with an existing load module's name.

\section*{FILE ERROR 27 File too large}

This report is given when a write to a file would cause the system limit on file size to be exceeded.

\section*{FILE ERROR 28 No space left}

This report is given when a write to a file would exceed the capacity of the device containing the file.

FILE ERROR 30 Read only file
This report is given when an attempt is made to write to a device which can only be read from. This would occur with a write-protected tape.

\section*{Appendices: PCRE Specifications}

PCRE (Perl Compatible Regular Expressions) is an open source library used by the \(\square R\) and \(\square S\) system operators. The regular expression syntax which the library supports is not unique to APL nor is it an integral part of the language. Its documentation is reproduced verbatim in this Appendix and in the Appendices to the Dyalog APL Release Notes Version 13.0.

There are two named sections: pcrepattern, which describes the full syntax and semantics); and prcresyntax, a quick reference summary. Both sections are provided in the Release Notes, only the latter is included herein.

\section*{Appendix A - PCRE Syntax Summary}

The following is a summary of search pattern syntax.
PCRESYNTAX (3)
PCRESYNTAX (3)

NAME
PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION SYNTAX SUMMARY
The full syntax and semantics of the regular expressions that are supported by PCRE are described in the pcrepattern documentation. This document contains just a quick-reference summary of the syntax.

QUOTING
\x where x is non-alphanumeric is a literal x
\(\backslash Q . . \backslash E\) treat enclosed characters as literal

\section*{CHARACTERS}
\begin{tabular}{ll}
\(\backslash a\) & alarm, that is, the BEL character (hex 07) \\
\(\backslash c x\) & "control-x", where \(x\) is any ASCII character \\
\(\backslash e\) & escape (hex 1B) \\
\(\backslash f\) & formfeed (hex 0C) \\
\(\backslash n\) & newline (hex 0A) \\
\(\backslash r\) & carriage return (hex 0D) \\
\(\backslash t\) & tab (hex 09) \\
\(\backslash d d d\) & character with octal code ddd, or backreference \\
\(\backslash x h h\) & character with hex code hh \\
\(\backslash x\{h h h .\}\). & character with hex code hhh..
\end{tabular}

CHARACTER TYPES
\begin{tabular}{ll} 
• & \begin{tabular}{l} 
any character except newline; \\
in dotall mode, any character whatsoever
\end{tabular} \\
\(\backslash C\) & one byte, even in UTF-8 mode (best avoided) \\
\(\backslash d\) & a decimal digit \\
\(\backslash D\) & a character that is not a decimal digit \\
\(\backslash h\) & a horizontal whitespace character \\
\(\backslash H\) & a character that is not a horizontal whitespace character \\
\(\backslash N\) & a character that is not a newline \\
\(\backslash p\{x x\}\) & a character with the xx property \\
\(\backslash P\{x x\}\) & a character without the xx property \\
\(\backslash R\) & a newline sequence \\
\(\backslash S\) & a whitespace character \\
\(\backslash S\) & a character that is not a whitespace character \\
\(\backslash v\) & a vertical whitespace character \\
\(\backslash V\) & a character that is not a vertical whitespace character \\
\(\backslash W\) & a "word" character \\
\(\backslash W\) & a "non-word" character \\
\(\backslash X\) & an extended Unicode sequence
\end{tabular}

In PCRE, by default, \d, \D, \s, \S, \w, and \W recognize only ASCII
characters, even in UTF-8 mode. However, this can be changed by setting the PCRE UCP option.

GENERAL CATEGORY PROPERTIES FOR \(\backslash p\) and \(\backslash P\)
\begin{tabular}{|c|c|}
\hline C & Other \\
\hline Cc & Control \\
\hline Cf & Format \\
\hline Cn & Unassigned \\
\hline Co & Private use \\
\hline Cs & Surrogate \\
\hline L & Letter \\
\hline Ll & Lower case letter \\
\hline Lm & Modifier letter \\
\hline Lo & Other letter \\
\hline Lt & Title case letter \\
\hline Lu & Upper case letter \\
\hline L\& & \(\mathrm{Ll}, \mathrm{Lu}\), or Lt \\
\hline M & Mark \\
\hline Mc & Spacing mark \\
\hline Me & Enclosing mark \\
\hline Mn & Non-spacing mark \\
\hline N & Number \\
\hline Nd & Decimal number \\
\hline N1 & Letter number \\
\hline No & Other number \\
\hline P & Punctuation \\
\hline PC & Connector punctuation \\
\hline Pd & Dash punctuation \\
\hline Pe & Close punctuation \\
\hline Pf & Final punctuation \\
\hline Pi & Initial punctuation \\
\hline Po & Other punctuation \\
\hline Ps & Open punctuation \\
\hline S & Symbol \\
\hline Sc & Currency symbol \\
\hline Sk & Modifier symbol \\
\hline Sm & Mathematical symbol \\
\hline So & Other symbol \\
\hline Z & Separator \\
\hline Z1 & Line separator \\
\hline Zp & Paragraph separator \\
\hline Zs & Space separator \\
\hline
\end{tabular}

PCRE SPECIAL CATEGORY PROPERTIES FOR \(\backslash p\) and \(\backslash P\)
\begin{tabular}{ll} 
Xan & Alphanumeric: union of properties \(L\) and \(N\) \\
Xps & POSIX space: property \(Z\) or tab, NL, VT, FF, CR \\
Xsp & Perl space: property Z or tab, NL, FF, CR \\
Xwd & Perl word: property Xan or underscore
\end{tabular}

\section*{SCRIPT NAMES FOR \(\backslash p\) AND \(\backslash P\)}

Arabic, Armenian, Avestan, Balinese, Bamum, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret, Devanagari, Egyptian_Hieroglyphs, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana, Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscriptional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li, Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lisu, Lycian, Lydian, Malayalam, Meetei_Mayek, Mongolian, Myanmār, New_Tai_Lue, Nko, Ogham, Old_Italic, Old_Persian, Old_South_Arabian, Old_Turkic, Ol_Chiki, Oriya, Osmanya, Phags_Pa, Phoenícian, Rejang, Runic, Samarī̄an, Saurashtra, Shavian, Sinhala, Sundanese, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugar̄itic, Vai, Yi.

\section*{CHARACTER CLASSES}
\begin{tabular}{ll}
{\([\ldots]\).} & positive character class \\
{\([\wedge \ldots]\)} & negative character class \\
{\([x-y]\)} & range (can be used for hex characters) \\
{\([[: x x x:]]\)} & positive POSIX named set \\
{\([[: \wedge x x x:]]\)} & negative POSIX named set \\
& \\
alnum & alphanumeric \\
alpha & alphabetic \\
ascii & \(0-127\) \\
blank & space or tab \\
cntrl & control character \\
digit & decimal digit \\
graph & printing, excluding space \\
lower & lower case letter \\
print & printing, including space \\
punct & printing, excluding alphanumeric \\
space & whitespace \\
upper & upper case letter \\
word & same as \w \\
xdigit & hexadecimal digit
\end{tabular}

In PCRE, POSIX character set names recognize only ASCII characters by default, but some of them use Unicode properties if PCRE_UCP is set. You can use \Q...\E inside a character class.

\section*{QUANTIFIERS}
\begin{tabular}{ll}
\(?\) & 0 or 1, greedy \\
\(?+\) & 0 or 1, possessive \\
\(? ?\) & 0 or 1, lazy \\
\(*\) & 0 or more, greedy \\
\(*_{+}\) & 0 or more, possessive \\
\(* ?\) & 0 or more, lazy \\
+ & 1 or more, greedy \\
++ & 1 or more, possessive \\
\(+?\) & 1 or more, lazy \\
\(\{n\}\) & exactly \(n\) \\
\(\{n, m\}\) & at least \(n\), no more than m, greedy \\
\(\{n, m\}+\) & at least \(n\), no more than m, possessive
\end{tabular}
```

{n,m}? at least n, no more than m, lazy
{n,} n or more, greedy
{n,}+ n or more, possessive
{n,}? n or more, lazy

```

ANCHORS AND SIMPLE ASSERTIONS
\begin{tabular}{|c|c|}
\hline \b & word boundary \\
\hline \B & not a word boundary \\
\hline \(\wedge\) & \begin{tabular}{l}
start of subject \\
also after internal newline in multiline mode
\end{tabular} \\
\hline \(\backslash\) A & start of subject \\
\hline \$ & end of subject \\
\hline & \begin{tabular}{l}
also before newline at end of subject \\
also before internal newline in multiline mode
\end{tabular} \\
\hline \(\backslash \mathrm{Z}\) & end of subject \\
\hline & also before newline at end of subject \\
\hline \z & end of subject \\
\hline \G & first matching position in subject \\
\hline
\end{tabular}

MATCH POINT RESET
\K reset start of match

ALTERNATION
expr|expr|expr...

CAPTURING
\begin{tabular}{ll}
\((\ldots\) ) & capturing group \\
\((?<\) name>...) & named capturing group (Perl) \\
\((? '\) name'...) & named capturing group (Perl) \\
\((? P<\) name>...) & named capturing group (Python) \\
\((?: \ldots)\) & non-capturing group \\
\((? \mid \ldots)\) & non-capturing group; reset group numbers for \\
& capturing groups in each alternative
\end{tabular}

ATOMIC GROUPS

> (?>...) atomic, non-capturing group

COMMENT

> (?\#....) comment (not nestable)

OPTION SETTING
\begin{tabular}{ll}
\((? i)\) & caseless \\
\((? J)\) & allow duplicate names \\
\((? m)\) & multiline \\
(?s) & single line (dotall) \\
(?U) & default ungreedy (lazy)
\end{tabular}
```

(?x) extended (ignore white space)
(?-...) unset option(s)

```

The following are recognized only at the start of a pattern or after one of the newline-setting options with similar syntax:
```

(*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
(*UT\overline{F}8) - set UTF-8 mode (PCRE_UTF8)
(*UCP) set PCRE_UCP (use Unicode properties for \d etc)

```

LOOKAHEAD AND LOOKBEHIND ASSERTIONS
```

(?=...) positive look ahead
(?!...) negative look ahead
(?<=...) positive look behind
(?<!...) negative look behind

```

Each top-level branch of a look behind must be of a fixed length.

\section*{BACKREFERENCES}
\begin{tabular}{ll}
\(\backslash n\) & reference by number (can be ambiguous) \\
\(\backslash g n\) & reference by number \\
\(\backslash g\{n\}\) & reference by number \\
\(\backslash g\{-n\}\) & relative reference by number \\
\(\backslash k<n a m e>\) & reference by name (Perl) \\
\(\backslash k '\) name' & reference by name (Perl) \\
\(\backslash g\{\) name \(\}\) & reference by name (Perl) \\
\(\backslash k\{\) name \(\}\) & reference by name (.NET) \\
\((? P=\) name) & reference by name (Python)
\end{tabular}

SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)
\begin{tabular}{|c|c|}
\hline (?R) & recurse whole pattern \\
\hline (?n) & call subpattern by absolute number \\
\hline (?+n) & call subpattern by relative number \\
\hline (?-n) & call subpattern by relative number \\
\hline (? \& name) & call subpattern by name (Perl) \\
\hline (? P > name) & call subpattern by name (Python) \\
\hline \g<name> & call subpattern by name (Oniguruma) \\
\hline \g'name' & call subpattern by name (Oniguruma) \\
\hline \g<n> & call subpattern by absolute number (Oniguruma) \\
\hline \(\backslash g^{\prime} n^{\prime}\) & call subpattern by absolute number (Oniguruma) \\
\hline \(\backslash \mathrm{g}<+\mathrm{n}>\) & call subpattern by relative number (PCRE extension) \\
\hline \(\backslash g^{\prime}+n^{\prime}\) & call subpattern by relative number (PCRE extension) \\
\hline \g<-n> & call subpattern by relative number (PCRE extension) \\
\hline \(\backslash g^{\prime}-n '\) & call subpattern by relative number (PCRE extension) \\
\hline
\end{tabular}

\section*{CONDITIONAL PATTERNS}
```

(? (condition) yes-pattern)
(?(condition) yes-pattern|no-pattern)
(?(n)... absolute reference condition
(?(+n)... relative reference condition
(?(-n)... relative reference condition

```
```

(?(<name>)... named reference condition (Perl)
(?('name')... named reference condition (Perl)
(?(name)... named reference condition (PCRE)
(?(R)... overall recursion condition
(?(Rn)... specific group recursion condition
(?(R\&name)... specific recursion condition
(?(DEFINE)... define subpattern for reference
(?(assert)... assertion condition

```

BACKTRACKING CONTROL
The following act immediately they are reached:
```

(*ACCEPT) force successful match
(*FAIL) force backtrack; synonym (*F)

```

The following act only when a subsequent match failure causes a backtrack to reach them. They all force a match failure, but they differ in what happens afterwards. Those that advance the start-of-match point do so only if the pattern is not anchored.
```

(*COMMIT) overall failure, no advance of starting point
(*PRUNE) advance to next starting character
(*SKIP) advance start to current matching position
(*THEN) local failure, backtrack to next alternation

```

NEWLINE CONVENTIONS
These are recognized only at the very start of the pattern or after a (*BSR_...) or (*UTF8) or (*UCP) option.
\begin{tabular}{ll} 
(*CR) & carriage return only \\
(*LF) & linefeed only \\
(*CRLF) & carriage return followed by linefeed \\
(*ANYCRLF) & all three of the above \\
(*ANY) & any Unicode newline sequence
\end{tabular}

WHAT \(\backslash \mathrm{R}\) MATCHES
These are recognized only at the very start of the pattern or after a (*...) option that sets the newline convention or UTF-8 or UCP mode.
\begin{tabular}{ll} 
(*BSR_ANYCRLF) & CR, LF, or CRLF \\
(*BSR_UNICODE) & any Unicode newline sequence
\end{tabular}

CALLOUTS
\begin{tabular}{ll} 
(?C) & callout \\
(?Cn) & callout with data \(n\)
\end{tabular}

AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow{6}{*}{Symbolic Index}} & ？ & See deal／roll \\
\hline & & ！ & See binomial／factorial \\
\hline & & 4 & See grade up \\
\hline & & 中 & See grade down \\
\hline & & \(\pm\) & See execute \\
\hline & & ¢ & See format \\
\hline ＋ & See add／identity／plus & \(\perp\) & See decode \\
\hline － & See minus／negate／subtract & T & See encode \\
\hline \(\times\) & See multiply／signum／times & \(\bigcirc\) & See circular／pi times \\
\hline \(\div\) & See divide／reciprocal & ¢ & See transpose \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{See matrix divide／matrix inverse} & \(\phi\) & See reverse／rotate \\
\hline & & \(\ominus\) & See reverse first／rotate first \\
\hline ｜ & See magnitude／residue & ， & See catenate／laminate／ravel \\
\hline 「 & See ceiling／maximum & ； & See catenate first／table \\
\hline L & See floor／minimum & \multirow[t]{2}{*}{乙} & \multirow[t]{2}{*}{See index generator／index of} \\
\hline ＊ & See exponential／power & & \\
\hline \(\oplus\) & See logarithm & \(\rho\) & See reshape／shape \\
\hline ＜ & See less & \(\epsilon\) & See enlist／membership／type \\
\hline ＞ & See greater & \(\underline{E}\) & See find \\
\hline \(\leq\) & See less or equal & \(\uparrow\) & See disclose／mix／take／ancestry \\
\hline \(\geq\) & See greater or equal & \(\downarrow\) & See drop／split \\
\hline ＝ & See equal & \(\leftarrow\) & See assignment \\
\hline \＃ & See not equal & \(\rightarrow\) & See abort／branch \\
\hline 三 & See depth／match & & See name separator／decimal \\
\hline \＃ & See not match & － & point／inner product \\
\hline \(\sim\) & See excluding／not／without & \(\bigcirc\) & See outer product \\
\hline \(\wedge\) & See and／caret pointer & － & See compose \\
\hline \(v\) & See or & ／ & \\
\hline \(\tilde{\wedge}\) & See nand & & compress／replicate／reduce \\
\hline v & See nor & \(t\) & See replicate first／reduce first \\
\hline \(u\) & See union／unique & \(\backslash\) & See expand／scan \\
\hline \(n\) & See intersection & \(t\) & See expand first／scan first \\
\hline & & ， & See each \\
\hline c & enclose／partition／partitioned enclose & \(\ddot{\sim}\) & See commute \\
\hline 2 & See disclose／mix／pick & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \& & See spawn & : EndFor & See end-for control \\
\hline \(\ddot{*}\) & See power operator & : EndHold & See end-hold control \\
\hline \(\theta\) & See zilde & : EndIf & See end-if control \\
\hline - & See negative sign & : EndNamespace & See endnamespace \\
\hline - & See underbar character & : EndProperty & See endproperty statement \\
\hline \(\Delta\) & See delta character & : EndRepeat & See end-repeat control \\
\hline \(\triangle\) & See delta-underbar character & : EndSelect & See end-select control \\
\hline '' & See quotes & : EndTrap & See end-trap control \\
\hline \(\square\) & See index/axis & : EndWhile & See end-while control \\
\hline [] & See indexing/axis & : EndWith & See end-with control \\
\hline () & See parentheses & : Field & See field statement \\
\hline \{\} & See braces & :For.... In. & See for statement \\
\hline \(\alpha\) & See left argument & : Goto & See go-to branch \\
\hline \(\alpha \alpha\) & See left operand & : Hold & See hold statement \\
\hline \(\omega\) & See right argument & : Include & See include statement \\
\hline \(\omega \omega\) & See right operand & : If & See if statement \\
\hline \# & See Root object & : Implements & See implements statement \\
\hline \#\# & See parent object & : Interface & See interface statement \\
\hline \(\stackrel{ }{*}\) & See statement separator & : Leave & See leave branch \\
\hline ค & See comment symbol & : Namespace & See namespace statement \\
\hline \(\nabla\) & See function self/del editor & : OrIf & See or-if condition \\
\hline \(\nabla \nabla\) & See operator self & : Property & See property statement \\
\hline ; & See name separator/array separator & : Repeat & See repeat statement See return branch \\
\hline : & See label colon & : Section & See section statement \\
\hline : AndIf & See and if condition & : Select & See select statement \\
\hline : Access & See access statement & : Trap & See trap statement \\
\hline : Case & See case qualifier & : Until & See until condition \\
\hline : CaseList & See caselist qualifier & :While & See while statement \\
\hline :Class & See class statement & : With & See with statement \\
\hline : Continue & See continue branch & \(\square\) & See quote-quad/character \\
\hline : Else & See else qualifier & - & \\
\hline : ElseIf & See else-if condition & \(\square\) & See quad/evaluated I \O \\
\hline : End & See general end control & पÁ & See underscored alphabet \\
\hline : EndClass & See endclass statement & -A & See alphabet \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DAI & See account information & Dfareate & See file create \\
\hline DAN & See account name & DFDROP & See file drop component \\
\hline DARBIN & See arbitrary input & DfERASE & See file erase \\
\hline Darbout & See arbitrary output & DFHOLD & See file hold \\
\hline Dat & See attributes & DFIX & See fix script \\
\hline Dav & See atomic vector & DFLIB & See file library \\
\hline DAVU & See atomic vector - unicode & DFMT & See format \\
\hline -base & See base class & Dfnames & See file names \\
\hline CCLASS & See class & DFNUMS & See file numbers \\
\hline -CLEAR & See clear workspace & DFPROPS & See file properties \\
\hline -CMD & See execute DOS command/start AP & DFR & See floating-point representation \\
\hline -CR & See canonical representation & -FRDAC & See file read access matrix \\
\hline DCs & See change space & DFRDCI & See file read component \\
\hline -CT & See comparison tolerance & & \\
\hline -CY & See copy workspace & DFREAD & See file read component \\
\hline -D & See digits & DFRENAME & See file rename \\
\hline -DCT & See decimal comparison tolerance & Dfreplace
Dfresize & See file replace component See file resize \\
\hline -DF & See display form & DFSIZE & See file size \\
\hline DDIV & See division method & DFSTAC & See file set access matrix \\
\hline -DD & See delay & Dfstie & See file share tie \\
\hline TDM & See diagnostic message & Dfile & See file tie \\
\hline -DQ & See dequeue events & Dfuntie & See file untie \\
\hline DDR & See data representation & DFX & See fix definition \\
\hline DED & See edit object & DINSTANCES & See instances \\
\hline DEM & See event message & DIO & See index origin \\
\hline Den & See event number & -KL & See key label \\
\hline DEX & See expunge object & -LC & See line counter \\
\hline DEXCEPTION & See exception & DLOAD & See load workspace \\
\hline DEXPORT & See export object & DLOCK & See lock definition \\
\hline DFAPPEND & See file append component & LLX & See latent expression \\
\hline DFAVAIL & See file available & DMAP & See map file \\
\hline DFCHK & See file check and repair & -ML & See migration level \\
\hline DFCOPY & See file copy & DMONITOR & See monitor \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline LNA & See name association & -RTL & See response time limit \\
\hline CNAPPEND & See native file append & - \({ }^{\text {S }}\) & See search \\
\hline UNC & See name class & USAVE & See save workspace \\
\hline - & See native file create & USD & See screen dimensions \\
\hline DNERASE & See native file erase & TSE & See session namespace \\
\hline DNEW & See new instance & USH & See execute shell \\
\hline -NL & See name list & & \\
\hline CNLOCK & See native file lock & DSHADOW & See shadow name \\
\hline [NNAMES & See native file names & USI & See state indicator \\
\hline CNNUMS & See native file numbers & DSIGNAL & See signal event \\
\hline -NQ & See enqueue event & USIZE & See size of object \\
\hline -NR & See nested representation & USM & See screen map \\
\hline - NREAD & See native file read & LSR & See screen read \\
\hline - \({ }^{\text {a }}\) RENAME & See native file rename & USRC & See source \\
\hline ONREPLACE & See native file replace & USTACK & See state indicator stack \\
\hline - \({ }^{\text {dreSIZE }}\) & See native file resize & DSTATE & See state of object \\
\hline UNS & See namespace & USTOP & See stop control \\
\hline UNSI & See namespace indicator & USVC & See shared variable control \\
\hline UNSIZE & See native file size & USVO & See shared variable offer \\
\hline DNTIE & See native file tie & USVQ & See shared variable query \\
\hline -NULL & See null item & USVR & See shared variable retract \\
\hline DNUNTIE & See native file untie & USVS & See shared variable state \\
\hline DNXLATE & See native file translate & DTC & See terminal control \\
\hline DOFF & See sign off APL & DTCNUMS & See thread child numbers \\
\hline DOR & See object representation & DTGET & See get tokens \\
\hline DOPT & See variant & DTHIS & See this space \\
\hline पPATH & See search path & DTID & See thread identity \\
\hline DPFKEY & See program function key & DTKILL & See thread kill \\
\hline DPP & See print precision & DTNAME & See thread name \\
\hline DPROFILE & See profile application & DTNUMS & See thread numbers \\
\hline -PW & See print width & DTPOOL & See token pool \\
\hline DREFS & See cross references & DTPUT & See put tokens \\
\hline -R & See replace & DTREQ & See token requests \\
\hline -RL & See random link & -trace & See trace control \\
\hline & & DTRAP & See trap event \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline DTS & See time stamp & ) OPS & See list operators \\
\hline DTSYNC & See threads synchronise & ) PCOPY & See protected copy \\
\hline DUCS & See unicode convert & )PROPS & See list properties \\
\hline DUSING & See using path & ) RESET & See reset state indicator \\
\hline DVFI & See verify and fix input & ) SAVE & See save workspace \\
\hline -VR & See vector representation & ) SH & See shell command \\
\hline DWA & See workspace available & ) SI & See state indicator \\
\hline DWC & See window create object & )SINL & See state indicator name \\
\hline IWG & See window get property & )TID & See thread identity \\
\hline IWN & See window child names & ) VARS & See list variables \\
\hline DWS & See window set property & )WSID & See workspace identity \\
\hline DWSID & See workspace identification & ) XLOAD & See quiet-load workspace \\
\hline पWX & See window expose names & & \\
\hline DXSI & See extended state indicator & & \\
\hline -XT & See external variable & & \\
\hline ) CLASSES & See list classes & & \\
\hline ) CLEAR & See clear workspace & & \\
\hline \() \mathrm{CMD}\) & See command & & \\
\hline ) CONTINUE & See continue off & & \\
\hline ) COPY & See copy workspace & & \\
\hline ) CS & See change space & & \\
\hline ) DROP & See drop workspace & & \\
\hline ) ED & See edit object & & \\
\hline ) ERASE & See erase object & & \\
\hline ) EVENTS & See list events & & \\
\hline ) FNS & See list functions & & \\
\hline ) HOLDS & See held tokens & & \\
\hline ) LIB & See workspace library & & \\
\hline ) LOAD & See load workspace & & \\
\hline ) METHODS & See list methods & & \\
\hline )NS & See namespace & & \\
\hline ) OBJECTS & See list objects & & \\
\hline \()\) OBS & See list objects & & \\
\hline ) OFF & See sign off APL & & \\
\hline
\end{tabular}
Index
A
abort function ..... 221
absolute value ..... 287
access codes ..... 458-462, 464access statement
70, 76, 164, 208
Access Statement ..... 204
Account Information ..... 385
Account Name ..... 385
add arithmetic function ..... 222
alphabetic characters ..... 384
ambivalent functions ..... 18, 64
ancestors ..... 544
and-if condition ..... 74
and boolean function ..... 223
APL
arrays ..... 4
characters ..... 391
component files ..... 61
error messages ..... 690
expressions ..... 17
functions ..... 18
line editor ..... 20, 128
operators ..... 21
quotes ..... 6
statements ..... 65
aplcore ..... 351
appending components to files ..... 430
appending to native file ..... 505
arbitrary output ..... 386
arguments ..... 63
arguments of functions ..... 18
array expressions ..... 17
array separator ..... 227, 280
arrays4
depth of ..... 4
dimensions of ..... 313
display of ..... 11
enclosed ..... 7
indexing ..... 280
matrix ..... 4
multi-dimensional ..... 4
of namespace references ..... 40
prototypes of ..... 219
rank of ..... 4,313
scalar ..... 4
shape of ..... 4
type of ..... 5
unit ..... 215
vector ..... 4
assignment ..... 224
distributed ..... 42
function ..... 20
indexed ..... 227
indexed modified ..... 324
modified by functions ..... 323
re-assignment ..... 226
selective ..... 231
selective modified ..... 325
simple ..... 224
atomic vector ..... 391
atomic vector - unicode \(391,407,473,505\),532, 539, 663, 708
attribute statement ..... 71,77, 203
attributes of operations ..... 387
auto_pw parameter ..... 554
auxiliary processors ..... 61,401
axis operator ..... 220
with dyadic operands ..... 326
with monadic operands ..... 325
axis specification ..... 220, 322
B
bad ws ..... 690
base class ..... 137, 140, 201, 394
base constructor ..... 150
best fit approximation ..... 290
beta function ..... 232
binary integer decimal ..... 30
binomial function ..... 232
body
of function ..... 19
of operator ..... 22, 63
Boolean functions
and (conjunction) ..... 223
nand ..... 294
nor ..... 295
not ..... 295
not-equal (exculsive disjunction) ..... 296
or (inclusive disjunction) ..... 297
braces ..... 19
bracket indexing ..... 280
branch arrow ..... 97
branch function ..... 232
branch statements
branch ..... 97
continue ..... 98
goto ..... 97
leave ..... 97
return ..... 97
byte order mark ..... 558
C
callback functions ..... 422, 527
callback functions run as threads ..... 47
cannot create name ..... 690
canonical representation of operations ..... 63 ,
caret pointer ..... 414402
case-list qualifier ..... 74
case qualifier clause
catenate function ..... 235
ceiling function ..... 237
change user ..... 362
changing namespaces ..... 404, 664
character arrays ..... 6
character input/output ..... 380
characters ..... 6
checksum ..... 452-453
child names ..... 635
child threads ..... 609
choose indexed assignment ..... 229
choose indexing ..... 282
circular functions ..... 25, 238
class (system function) ..... 395
class statement ..... 201
classes
base class 137, 140, 201, 394
casting ..... 396
class system function ..... 395
constructors ..... 141-142, 148, 150, 153
copying663
defining ..... 138
derived from .Net Type ..... 140
derived from GUI ..... 141
destructor ..... 148, 155
display form ..... 410
editing ..... 139
external interfaces ..... 516
fields ..... 158-159, 206, 507
fix script ..... 440
including namespaces ..... 184
inheritance ..... 137, 140
instances ..... 137, 141, 155, 466
introduction ..... 137
list classes ..... 659
members ..... 158
methods ..... 158, 164
name-class ..... 515-516
new instance ..... 518
properties ..... \(158,168,208,508\)
script ..... 138
source ..... 595
this space ..... 611
using statement ..... 202
classic edition ..... 346, 539, 566
Classic Edition \(266,270,391,424,468,472\),530, 539, 608
classification of names ..... 506
clear state indicator ..... 673, 677
clear ws ..... 690
clearing workspaces ..... 397, 659
CMD_POSTFIX parameter ..... 661, 675
CMD_PREFIX parameter ..... 661, 675
colon character ..... 67
command operating system ..... 660
command processor ..... 398, 660
comments ..... 63, 65
commute operator ..... 329
comparison tolerance ..... 406
complex numbers ..... 6, 23
circular functions ..... 25, 238
floating-point representation ..... 29, 457
component files ..... 61
checksum ..... 452-453
file properties ..... 452
journaling ..... 453
unicode ..... 452, 454
ComponentFile Class example ..... 175
composition operator
\(\begin{array}{lr}\text { form I } & 330 \\ \text { form II } & 108,331 \\ \text { form III } & 108,332\end{array}\)
form IV 332
compress operation 306
Compute Time 385
conditional statements
if (condition)
until

\section*{while}
conformability of arguments
conjunction
Connect Time
constructors
base
introduction
monadic
niladic overloading788381219223

385
continue branch statements 98
continue off 661
control qualifiers
case \(\quad 87\)
control structures 74
for
hold
85
more
if (condition)
repeat
select
trap
while
with
control words
copy incomplete
copying component files
copying from other workspaces
core to aplcore
CPU time
creating component files
creating GUI objects
creating namespaces
creating native files
cross references
curly brackets
current thread identity
cutback error trap476
434631
533, 670517
55519
612
D
data representation
dyadic ..... 424
monadic ..... 423
DEADLOCK ..... 690
deal random function ..... 239
decimal comparison tolerance ..... 30, 409
decimal numbers ..... 5
decimal point ..... 5
default constructor ..... 146, 148
default property ..... 174,276
defined functions ..... 63
defined operations ..... 63
defined operators ..... 63
defining function ..... 19
defining operators ..... 22
definition mode ..... 128
defn error ..... 691
del editor ..... 128
delay times ..... 413
delta-underbar character ..... 8
delta character ..... 8
denormal numbers ..... 547
densely packed decimal ..... 30
deprecated features
32-bit component files ..... 435
atomic vector ..... 391
terminal control ..... 608
underscored alphabet ..... 384
depth of arrays ..... 4
dequeuing events ..... 420
derived functions ..... 21, 63, 321destructor
148, 155dfns
127
diagnostic messages
diamond symbol ..... 414
407, 662 ..... 351 ..... 65
digits 0 to 9 ..... 409
dimensions of arrays ..... 313
direction ..... 314
direction function ..... 242disclose function
244
disjunction ..... 297
display form
display form ..... 410
displaying arrays ..... 11, 14
displaying assigned functions ..... 20
displaying held tokens ..... 667
distributed functions ..... 43
divide arithmetic function ..... 245
division methods ..... 413dmxDOMAIN ERRORDotAll option
415,584571, 692
drop function ..... 246566
with axes ..... 247
dropping components from files ..... 436
dropping workspaces ..... 664
dyadic functions ..... 18
dyadic operations ..... 64
dyadic operators
dyadic primitive functions
add ..... 222
and ..... 223
catenate ..... 235
deal ..... 239
divide ..... 245
drop ..... 246
encode ..... 250
execute ..... 255
expand ..... 256
expand-first ..... 257
find ..... 258
format ..... 264
grade down ..... 267
grade up ..... 271
greater ..... 272
greater or equal ..... 273
greatest common divisor ..... 297
index function ..... 274
index of ..... 279
intersection ..... 284
left ..... 285
less286
less or equal ..... 286
logarithm ..... 287
match ..... 288
matrix divide ..... 289
maximum ..... 292
member of ..... 292
minimum ..... 292
nand ..... 294
nor ..... 295
not equal ..... 296
not match ..... 296
or . ..... 297
partition ..... 298
partitioned enclose ..... 300
pick ..... 301
power ..... 24,302
replicate ..... 306
reshape ..... 308
residue ..... 308
right ..... 309
rotate ..... 310
subtract ..... 314
take ..... 316
transpose ..... 318
unique ..... 320
dyadic primitive operators
axis ..... 325-326
compose ..... 330-332
each ..... 334
inner product ..... 335
outer product ..... 336
replace ..... 346, 556
search ..... 346, 556
variant ..... 346, 539, 556, 564
dyadic scalar functions ..... 215
dynamic data exchange ..... 603
dynamic functions ..... 112
default left arguments ..... 114
error guards ..... 120
guards ..... 115
local assignment of ..... 113
multi-line ..... 113, 127
recursion ..... 123
result of ..... 113
static name scope ..... 117
tail calls ..... 118, 123
dynamic link libraries ..... 477
dynamic localisation ..... 35
dynamic name scope ..... 117
dynamic operators ..... 112, 122-123
Eeach operator
with dyadic operands ..... 334
with monadic operands ..... 333
editing APL objects ..... 425, 665
editing directives ..... 131
editor ..... 425
else-if condition ..... 74
else qualifier ..... 74
empty vectors ..... 6,320
Enc option ..... 570
enclose function ..... 248
with axes ..... 249
enclosed arrays ..... 7
enclosed elements ..... 7
encode function ..... 250
end-for control ..... 75
end-hold control ..... 75
end-if control ..... 75
end-repeat control ..... 75
end-select control ..... 75
end-trap control ..... 75
end-while control ..... 75
end-with control ..... 75
end control ..... 75
endproperty statement ..... 208
endsection statement ..... 98
enlist function ..... 252
enqueuing an event ..... 526
EOF INTERRUPT ..... 692
EOL option ..... 566
equal relational function ..... 253
erasing component files ..... 437
erasing native files ..... 517
erasing objects from workspaces ..... 427
error guards ..... 120
error messages ..... 681
error trapping control structures ..... 94
error trapping system variable ..... 617
Euler identity ..... 107
evaluated input/output ..... 382
evaluation of namespace references ..... 34
event messages ..... 425
exception ..... 426, 692
excluding set function ..... 254
exclusively tying files ..... 464
execute error trap ..... 617
execute operation
dyadic ..... 255
monadic ..... 255
executing commands
DOS ..... 660
UNIX ..... 580, 675
Windows ..... 398
exit code ..... 539
exiting APL system ..... 539, 671
expand-first operation ..... 257
expand operation ..... 256
with axis ..... 256
exponential function ..... 257
exporting objects ..... 429
exposing properties ..... 638
expressions ..... 65
array expressions ..... 17
function expressions ..... 17
expunge objects ..... 427
extended diagnostic message ..... 415, 584
extended state indicator ..... 653
external arrays ..... 654
external functions ..... 61,401
external interfaces ..... 516
external variables ..... 60
query ..... 656
set ..... 654
F
factorial function ..... 257
FIELD ... ERROR ..... 693
field statement ..... 206
fields ..... 158-159, 206, 507
initialising ..... 160
private ..... 161
public ..... 159
shared ..... 162
trigger ..... 163
file
append component ..... 430
available ..... 430
check and repair ..... 431
copy ..... 432
create ..... 434
drop component ..... 436
erase ..... 437
history ..... 437
hold ..... 439
library ..... 441
names ..... 450
numbers ..... 451
read access matrix ..... 457
read component ..... 458
read component information ..... 458
rename ..... 459
replace component ..... 460
resize ..... 461
set access matrix ..... 462
share-tie ..... 463
size ..... 462
tie (number) ..... 464
untie ..... 465
FILE ACCESS ERROR ..... 695
FILE ACCESS ERROR ... ..... 695
FILE COMPONENT DAMAGED ..... 695
file copy ..... 435
FILE DAMAGED ..... 696
FILE FULL ..... 696
file history ..... 437
FILE INDEX ERROR ..... 696
FILE NAME ERROR ..... 696
FILE NAME QUOTA USED UP ..... 697
file properties ..... 452
file system availability ..... 430
file system control block ..... 697
FILE SYSTEM ERROR ..... 697
FILE SYSTEM NO SPACE ..... 697
FILE SYSTEM NOT AVAILABLE ..... 697
FILE SYSTEM TIES USED UP ..... 697
FILE TIE ERROR ..... 698
FILE TIE QUOTA USED UP ..... 699
FILE TIED ..... 698
FILE TIED REMOTELY ..... 698
files
APL component files ..... 432, 434
mapped ..... 471
operating system native files ..... 517
fill elements ..... 219
fill item ..... 15
find function ..... 258
first function ..... 259
fix script ..... 138, 440
fixing operation definitions ..... 465
floating-point representation ..... 27-28, 30, 409,455
complex numbers ..... 29, 457
floor function ..... 259
for statements ..... 85
fork new task ..... 361
FORMAT ERROR ..... 699
FORMAT FILE ACCESS ERROR ..... 694
FORMAT FILE ERROR ..... 694
format function dyadic ..... 264
monadic ..... 260
format specification ..... 443
format system function affixtures ..... 445
digit selectors ..... 447
G-format ..... 447
O-format qualifier ..... 448
qualifiers ..... 444
text insertion ..... 443
formatting system function dyadic ..... 443
monadic ..... 442
FULL-SCREEN ERROR ..... 693
function assignment ..... 20,225
function body ..... 19
function display ..... 20
function header ..... 19
function keys ..... 546
function self-reference ..... 123
functions ..... 18
ambivalent ..... 18, 64
arguments of ..... 18
defined ..... 63
derived ..... 63
distributed ..... 43
dyadic ..... 18
dynamic ..... 112
external ..... 61
left argument ..... 18
mixed rank ..... 216
model syntax of ..... 64
monadic ..... 18
niladic ..... 18
pervasive ..... 213
primitive ..... 213
rank zero ..... 213
right argument ..... 18
scalar rank ..... 213
scope of ..... 18
G
gamma function ..... 257
generating random numbers ..... 575
get tokens ..... 609
getting properties of GUI objects ..... 634
global names ..... 66
goto branch statements ..... 97
grade-down function dyadic ..... 267
monadic ..... 266
grade-up function
dyadic ..... 271
monadic ..... 269
greater-or-equal function ..... 273
greater-than relational function ..... 272
greatest common divisor ..... 297
Greedy option ..... 568
guards ..... 115
GUI objects ..... 420

\section*{H}
hash tables ..... 108
header
of function ..... 19
of operator ..... 22, 63
header lines ..... 66
held tokens ..... 667
high-priority callback ..... 48
high minus symbol ..... 5
HOLD ERROR ..... 699
hold statements ..... 90
holding component files ..... 439
home namespace ..... 45
Ii-beam349
change user ..... 362
fork new task ..... 361
memory manager statistics ..... 353
parallel execution threshold ..... 352
read dataTable ..... 357
reap forked tasks ..... 363
signal counts ..... 365
syntax colouring ..... 350
thread synchrnisation mechanism ..... 365
updata DataTable ..... 354
IC option ..... 346, 564
identification of workspaces ..... 679
identity ..... 273
identity elements ..... 339
identity function ..... 239
identity matrix ..... 291
idiom recognition ..... 102
if statements ..... 78
implements statement constructor ..... 150
destructor ..... 155
method ..... 182
trigger ..... 99
in control word ..... 85
include statement ..... 184
incorrect command ..... 700
index
with axes ..... 277
index-generator function ..... 278
index-of function ..... 279
INDEX ERROR ..... 700
index function ..... 274
index origin ..... 467
indexed assignment ..... 227
indexed modified assignment ..... 324
indexing arrays ..... 280
ineach control word ..... 86
InEnc option ..... 569
inheritance ..... 137, 140
initialising fields ..... 160
inner-product operator ..... 335
instances ..... \(141,155,466,514\)
empty arrays of ..... 147-148
integer numbers ..... 5
interface statement ..... 200-201
interfaces ..... 181-182, 201, 516
INTERNAL ERROR ..... 701
INTERRUPT ..... 701
intersection set function ..... 284
iota ..... 278
J
journaling ..... 452-453
K
KEY CODE RANK ERROR ..... 694
KEY CODE TYPE ERROR ..... 694
KEY CODE UNRECOGNISED ..... 694
key labels ..... 468
keyed property ..... 177, 180
Keying Time385
kill threads ..... 612
L
labels
laminate function ..... 23565-66, 233
lamp symbol ..... 65
latent expressions ..... 471
least squares solution ..... 290
leave branch statements ..... 97
left ..... 285
left argument of function ..... 18
left operand of operators ..... 21
legal names ..... 8, 631
LENGTH ERROR ..... 702
less-or-equal function ..... 286
less-than relational function ..... 286
levels of migration towards APL2 ..... 61
levels of suspension ..... 110
libraries of component files ..... 441
LIMIT ERROR ..... 702
line editor ..... 128, 131
editing directives ..... 131line numbers132
line editor, traditional ..... 20
line labels ..... 65
line number counter ..... 468
line numbers ..... 132
list classes ..... 659list names in a classlisting global defined functions519listing global defined operators666
listing global namespaces671
listing global objects ..... 671 ..... 671 ..... 671
listing global variables ..... 679
listing GUI events ..... 666
listing GUI methods ..... 670
listing GUI properties ..... 673
listing workspace libraries ..... 668
literals

6loading workspaceswithout latent expressions
local nameslocalisation

469, 669 680
35, 63, 6666, 583
lock native file ..... 523
locking defined operations ..... 109, 470
logarithm function ..... 287
logical conjunction ..... 223
logical disjunction ..... 297
logical equivalence ..... 288
logical negation ..... 295
logical operations ..... 223
M
magic numbers ..... 458
magnitude function ..... 287
mantissae ..... 5
map file ..... 471
markup ..... 650
match relational function ..... 288
matrices ..... 4
matrix-divide function ..... 289
matrix-inverse function ..... 291
matrix product ..... 289
maximum function ..... 292
membership set function ..... 292
MEMCPY ..... 493
memory manager statistics ..... 353
methods ..... 158, 164
instance ..... 164, 166
private ..... 164
public ..... 164
shared ..... 164-165
superseding in the base class ..... 167
migration levels \(61,244,252,293,319,473\)
minimum function ..... 292
minus arithmetic function ..... 292
miscellaneous primitive functions ..... 216
mix function ..... 293
with axis ..... 293
mixed rank functions ..... 216
ML option ..... 567
Mode option ..... 346, 565, 570
modified assignment ..... 323
monadic functions ..... 18
monadic operations ..... 64
monadic operators ..... 21
monadic primitive functions branch ..... 232
ceiling ..... 237
direction ..... 242
disclose ..... 244
enclose ..... 248
enlist ..... 252
execute ..... 255
exponential ..... 257
factorial ..... 257
floor ..... 259
format ..... 260
grade down ..... 266
grade up ..... 269
identity ..... 239, 273
index generator ..... 278
magnitude ..... 287
matrix inverse ..... 291
mix ..... 293
natural logarithm ..... 294
negative ..... 295
not ..... 295
pi times ..... 301
ravel ..... 303
reciprocal ..... 306
reverse ..... 309
roll ..... 310
same ..... 313
shape ..... 313
signum ..... 242,314
split314
table ..... 315
transpose ..... 318
type319
union ..... 320
monadic primitive operators
assignment ..... 323-325
commute ..... 329
each ..... 333
reduce ..... 339, 342
scan ..... 343-344
spawn ..... 345
monadic scalar functions ..... 214
monitoring operation statistics
query ..... 476
set ..... 475
MPUT utility ..... 471
multi-dimensional arrays ..... 4
multiply arithmetic function ..... 294

\section*{N}
name already exists ..... 703
name association 48, 54, 477, 511
name classifications ..... 506
name is not a ws ..... 703
name lists by classification ..... 519
name of thread ..... 613
name references in operations ..... 555
name saved date/time ..... 706
name scope rules ..... 49
name separator ..... 63
namelist ..... 68, 143
names
function headers ..... 64
global ..... 66
in function headers ..... 68
legal ..... 8,631
local ..... 35, 63, 66
names of tied component files ..... 450
names of tied native files ..... 525
Namespace ..... 2
namespace does not exist ..... 703
namespace indicator ..... 535
namespace reference \(4,33,36,226,404,420\),634, 636
namespace reference assignment ..... 226
namespace script ..... 195, 513
namespace statement ..... 195, 200
namespaces
array expansion ..... 40
create ..... 670
distributed assignment ..... 42
distributed functions ..... 43
including in classes ..... 184
Introduction ..... 2
operators ..... 45
reference syntax ..... 32
search path ..... 544
this space ..... 611
unnamed ..... 38,533
nand boolean function ..... 294
Naperian logarithm function ..... 294
natch ..... 296
native file append ..... 505
create ..... 517
erase ..... 517
lock ..... 523
names ..... 525
numbers ..... 525
read ..... 529
rename ..... 531
replace ..... 531
resize ..... 533
size ..... 535
tie (number) ..... 536
translate ..... 538
untie ..... 538
natural logarithm function ..... 294
negate ..... 295
negative function ..... 295
negative numbers ..... 5
negative sign ..... 5
NEOL option ..... 567
nested arrays ..... 7
nested representation of operations ..... 528
new instance ..... 141, 518
next error trap ..... 617
niladic constructor ..... 146, 148, 152
niladic functions ..... 18
niladic operations ..... 64
niladic primitive functions
abort ..... 221
zilde ..... 320
NO PIPES ..... 702
NONCE ERROR ..... 276, 702
nor boolean function ..... 295
not-equal relational function ..... 296
not-match relational function ..... 296
not boolean function ..... 295
not copied name ..... 704
not found name ..... 704
not saved this ws is name ..... 704
notationkeys62
vector ..... 9
nsi ..... 535
null ..... 537
number of each thread ..... 613
numbered
property ..... 174
numbered property ..... 173
numbers ..... 5
complex ..... 6
decimals ..... 5
empty vectors ..... 6,320
integers ..... 5
mantissae ..... 5
negative ..... 5
numbers of tied component files ..... 451
numbers of tied native files ..... 525
numeric arrays ..... 5
0
object representation of operations ..... 540
OM option ..... 568
operands ..... 21, 63, 321
operations
model syntax ..... 64
pendent ..... 110
suspended ..... 110
valence of ..... 64
operator self-reference ..... 123
operators ..... 21
body ..... 22
derived functions ..... 21
dyadic ..... 21, 321
dynamic ..... 112, 122-123
header ..... 22
in namespaces ..... 45
model syntax of ..... 64
monadic ..... 21, 321
operands ..... 21
scope of ..... 21
syntax ..... 321
OPTION ERROR ..... 705
or-if condition ..... 74
or boolean function ..... 297
OutEnc option ..... 569
outer-product operator ..... 336
overridable ..... 164, 167, 204
override ..... 167, 204
P
parallel execution
parallel execution threshold ..... 352
thread synchronisation mechanism ..... 365
parallel execution threshold ..... 352
parent object ..... 32
partition function ..... 298
partitioned enclose function ..... 300
with axis ..... 300
pass-through values ..... 323
passnumbers of files ..... 458
PCRE ..... 556
pendent operations ..... 110
Penguin Class example ..... 182
pervasive functions ..... 213
pi-times function ..... 301
pick function ..... 301
plus arithmetic function ..... 302
power function ..... 24,302
primitive function classifications ..... 216
primitive functions ..... 213
primitive operators ..... 321
axis ..... 325-326
commute ..... 329
compose ..... 330-332
each ..... 333-334
indexed modified assignment ..... 324
inner product ..... 335
modified assignment ..... 323
outer product ..... 336
power ..... 337
reduce ..... 339
reduce-first ..... 342
reduce n -wise ..... 342
replace ..... 346, 556
scan ..... 343
scan-first ..... 344
search ..... 346, 556
selective modified assignment ..... 325
spawn ..... 345
variant ..... 346, 539, 556
Principal option ..... 346-347, 564
print precision in session ..... 547
print width in session ..... 554
PROCESSOR TABLE FULL ..... 705
product
inner ..... 335
outer ..... 336
profile application ..... 548
profile user command ..... 552
programming function keys ..... 546
properties ..... \(158,168,508-509\)
default ..... 174, 208
instance ..... 169-170, 208
keyed \(\quad 168,177,180,208,211\)
numbered \(\quad 168,172-174,208,210-211\)
private 208
properetyget function 172
propertyarguments class \(170,172,209\)
propertyget function 210-211
propertyget Function 276
propertyset function 172,276
propertyshape function \(\quad 172,212\)
public 208
shared 171,208
simple \(\quad 168-171,208,210-211\)
property statement 208
propertyarguments class \(\quad 170,172,209\)
propertyget function 172,210-211
propertyset function 172
propertyshape function 172
protected copying from workspaces 672
prototype \(\quad 15,219,333-334,336\)
put tokens 614

\section*{Q}
quad indexing 277
quietly loading workspaces 680
quote character 6

\section*{R}
random link 575
RANK ERROR 706
rank of arrays 4,313
ravel function 303
with axes 303
re-assignment 226
reach indexed assignment 230
reach indexing 283
read DataTable 357
reading components from files 458
reading file access matrices 457
reading file component information 458
reading native files 529
reading properties of GUI objects 634
reading screen maps 591
reap forked tasks 363
reciprocal function 306
recursion 123
reduce-first operator 342
reduce operator 339
reduction operator
n-wise 342
with axis 339
regular expressions 556
releasing component files 439
renaming component files 459
renaming native files 531
repeat statements 83
replace operator 346,556
DotAll 566
Enc 570
EOL 566
Greedy 568
IC 346,564
InEnc 569
ML 567
Mode 346, 565, 570
NEOL 567
OutEnc 569
replacing components on files 460
replacing data in native files 531
replicate operation 306
with axis 306
reset state indicator 673,677
reshape function 308
residue function 308
RESIZE 706
resizing component files 461
resizing native files 533
response time limit 578
return branch statements 97
reverse-first function 309,312
reverse function 309
with axis 309
right 309
right argument of function 18
right operand of operators 21
Right Parenthesis 657
roll random function 310
Root object 32
rotate function 310
with axis 310
rsi 577

\section*{S}
\[
\text { same } 313
\]
samplesdirectory ..... 127
saving continuation workspaces ..... 661
saving workspaces ..... 578, 673
scalar arrays ..... 4
scalar extension ..... 215
scalar functions ..... 213
scalars ..... 4
scan-first operator ..... 344
scan operator ..... 343
with axis ..... 343
scope of functions ..... 18
scope of operators ..... 21
screen dimensions ..... 579
screen maps ..... 588
screen read ..... 591
search functions ..... 108
search operator ..... 346, 556
DotAll ..... 566
Enc ..... 570
EOL ..... 566
Greedy ..... 568
IC ..... 346, 564
InEnc ..... 569
ML ..... 567
Mode ..... 346, 565, 570
NEOL ..... 567
OM ..... 568
OutEnc ..... 569
search path ..... 544, 627
section statement ..... 98
select statements ..... 87
selection primitive functions ..... 216
selective assignment ..... 231
selective modified assignment ..... 325
selector primitive functions ..... 216
self-reference
functions ..... 123
operators ..... 123
semi-colon sparator ..... 63
session namespace ..... 579
set difference ..... 254
setting properties of GUI objects ..... 636
shadowing names ..... 583
shape function ..... 313
shape of arrays ..... 4
share-tying files ..... 463
shared variables
603
603
offer couplings
offer couplings ..... 602
query couplings ..... 605
query outstanding offers ..... 605
retract offers ..... 606
set access control ..... 601
states ..... 607
shy results ..... 64, 116
signal ..... 584
signal counts ..... 365
signing off APL ..... 539, 671signum function
242,314simple assignment224
simple indexed assignment ..... 227
simple indexing ..... 280
size of objects ..... 587
sizes of component files ..... 462
sizes of native files ..... 535
source ..... 595
spawn thread operator ..... 345
special primitive functions ..... 216
specification ..... 8axis220, 322
of variables ..... 8
split function ..... 314
with axis ..... 314
squad indexing ..... 274
stack ..... 596
standard error action ..... 682
starting auxiliary processors
DOS ..... 401
UNIX ..... 581
state indicator ..... 110,582, 676
and name list ..... 677
clear ..... 673, 677
extension ..... 653
reset ..... 673, 677
stack ..... 596
statement separators ..... 65
statements ..... 65
branch statements ..... 97
conditional statements ..... 78
states of objects ..... 597
static localisation ..... 35
static name scope ..... 117
stop control
query ..... 600
set ..... 599
stop error trap ..... 617
strand notation ..... 9
STRLEN ..... 496
STRNCPY ..... 495
structural primitive functions ..... 216
structuring of arrays ..... 10
subtract arithmetic function ..... 314
suspended operations ..... 110
suspension ..... 110
switching threads ..... 48
synchronising threads ..... 55
syntax colouring ..... 350
SYNTAX ERROR ..... 707
syntax of operations ..... 64
sys error number ..... 708
system commands ..... 657
system constants ..... 371
system errors ..... 708
system functions ..... 367
categorized ..... 372
system namespaces ..... 370
system variables ..... 367
T
table function ..... 315
tail calls ..... 118, 123
take function ..... 316
with axes ..... 317
terminal control vector ..... 608
this space ..... 611
thread
name ..... 613
thread switching ..... 48
thread synchronisation mechanism ..... 365
threads ..... 46, 50
child numbers ..... 609
debugging ..... 58
external functions ..... 54
identity ..... 612
kill ..... 612
latch example ..... 57
numbers ..... 613, 621
paused and suspended ..... 59
semaphore example ..... 56
spawn ..... 345
synchronise ..... 55,623
threads and external functions ..... 54
threads and niladic functions ..... 53
tie numbers ..... 451, 525
time stamp ..... 622
TIMEOUT ..... 708
times arithmetic function ..... 318
token pool ..... 613
token requests ..... 621
tokens
get tokens ..... 609
introduction ..... 55
latch example ..... 57
put tokens ..... 614
semaphore example ..... 56
time-out ..... 609
token pool ..... 613
token requests ..... 621
too many names ..... 709
tracing lines in defined operations query ..... 616
set ..... 615
translating native files ..... 538
TRANSLATION ERROR 393,407,473,566, ..... 663, 708
transpose function dyadic ..... 318
monadic ..... 318
transposition of axes ..... 318
TRAP ERROR ..... 708
trap statements ..... 94
trapping error conditions ..... 617
trigger fields ..... 163
triggerarguments class ..... 99
triggers ..... 99
tying component files ..... 463-464
tying native files ..... 536
type function ..... 319
types of arrays ..... 5
U
underbar character ..... 8
underscored alphabetic characters ..... 384
unicode ..... 452, 454
unicode convert ..... 391, 608, 624
Unicode Edition 266, 270, 391, 472-473, 529,
532, 539
union set function ..... 320
unique set function ..... 320
unit arrays ..... 215
unknown-entity ..... 653
unnamed copy ..... 663
unnamed namespaces ..... 38
until conditional ..... 83
untying component files ..... 465
untying native files ..... 538
update DataTable ..... 354
user-defined operations ..... 63
User Identification ..... 385
using ..... 627
using statement ..... 202
UTF-16 ..... 625
UTF-32 ..... 625
UTF-8 ..... 625
V
valence of functions ..... 18
valence of operations ..... 64
valency ..... 18
valid names ..... 8
VALUE ERROR ..... 624, 709
variables
external ..... 60
specification of ..... 8
variant operator ..... 346, 539, 556, 564
vector arrays ..... 4
vector notation ..... 9
vector representation of operations ..... 628
vectors ..... 4
empty character ..... 399
empty numeric ..... 6
verify and fix input ..... 629
visible names ..... 66
W
waiting for threads to terminate ..... 623
warning duplicate label ..... 709
warning duplicate name ..... 710
warning label name present in line 0 ..... 710
warning pendent operation ..... 710
warning unmatched brackets ..... 711
warning unmatched parentheses ..... 711
while statements ..... 81
whitespace ..... 646
wide character ..... 485
window
create object ..... 631
get property ..... 634
names of children ..... 635
set property ..... 636
window expose names ..... 638
with statements ..... 89
without set function ..... 320
workspace available ..... 630
workspace identification ..... 637, 679
Workspaces ..... 1
writing file access matrices ..... 462
WS FULL ..... 712
ws not found ..... 712
ws too large ..... 712
X
xml convert ..... 639
markup ..... 650
unknown-entity ..... 653
whitespace ..... 646
Z
zilde constant ..... 6,320```

